Patellofemoral Arthroplasty (PFA) is an alternative to TKA for patellofemoral osteoarthritis that preserves tibiofemoral compartments. It is unknown how implant positioning affects biomechanics, especially regarding the patella. This study analysed biomechanical effects of femoral Nine cadaveric knees were studied using a repeated-measures protocol. Knees were tested intact, then after PFA implanted in various positions: neutral (as-planned), patellar over/understuffing (±2mm), patellar tilt, patellar flexion, femoral rotation, and femoral tilt (all ±6°). Arthroplasties were implemented with CT-designed patient-specific instrumentation. Anterior femoral cuts referenced Whiteside's line and all femoral positions ensured smooth condyle-to-component transition. Knee extension moments, medial patellofemoral ligament (MPFL) length-change, and tibiofemoral and patellofemoral kinematics were measured under physiological muscle loading. Data were analysed with one-dimensional statistical parametric mapping (Bonferroni-Holm corrected). PFA changed knee function, altering extension moments (p<0.001) and patellofemoral kinematics (p<0.05), but not tibiofemoral kinematics. Patellar component positioning affected patellofemoral kinematics: over/understuffing influenced patellar anterior translation and the patellar tendon moment arm (p<0.001). PFA can restore native knee biomechanics. Provided anterior femoral cuts are controlled and smooth condyle-to-component transition assured, patellar position affects biomechanics more than femoral, contradicting the hypothesis.Abstract