Based upon genetic analysis, decorin is an exciting pharmacologic agent of potential anti-fibrogenic effect on arthrofibrosis in our animal model. While the pathophysiology of arthrofibrosis is not fully understood, some anti-fibrotic molecules such as decorin could potentially be used for the prevention or treatment of joint stiffness. The goal of this study was to determine whether intra-articular administration of decorin influences the expression of genes involved in the fibrotic cascade ultimately leading to less contracture in an animal model.Summary
Introduction
ASTM therapy is commonly used to treat Achilles tendinopaty. However, there was no report to evaluate the biomechanical effects, especially the dynamic viscoelasticity. We have shown that ASTM treatment was biomechanically useful for chronic Achilles tendinopathy in an animal model. Achilles tendinopathy is a common chronic overuse injury. Because Achilles tendon overuse injury takes place in sports and there has been a general increase in the popularity of sports activities, the number and incidence of Achilles tendon overuse injury has increased. Augmented Soft Tissue Mobilization (ASTM) therapy is a modification of traditional soft tissue mobilization and has been used to treat a variety of musculoskeletal disorders. ASTM therapy is thought to promote collagen fiber realignment and hasten tendon repair. It might also change the biomechanical behavior of the injured tendon, especially the dynamic viscoelasticity. The purpose of this study is to evaluate the effect of ASTM therapy in a rabbit model of Achilles tendinopathy by quantifying dynamic biomechanical properties and histologic features.Summary Statement
Introduction
The excursion resistance between the tendon and pulley is an important factor contributing to the limitation of function after surgery to the hand. The administration of hyaluronic acid (HA) in the early rehabilitation after tendon grafting may help to prevent adhesions. We evaluated changes in the excursion resistance between potential sources of flexor tendon grafts and the annular pulley in a canine model after administration of HA. The intrasynovial and extrasynovial tendons were soaked in 10 mg/ml of HA for five minutes. The excursion resistance between these tendons and the annular pulley of an intact proximal phalanx and that of the same tendons of the opposite foot without administration of HA were evaluated. The tendon of flexor digitorum profundus of the second toe without administration of HA was used as a control. The gliding resistance of canine tendons was significantly decreased after the administration of HA especially in the extrasynovial tendons. Our findings suggest that the administration of HA may improve the gliding function of a flexor tendon graft.