Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 556 - 557
1 Nov 2011
Pichora D Kunz M Ma B Rudan JF Ellis RE Alsanawi H
Full Access

Purpose: The purpose of this clinical trial was to investigate the accuracy of a novel method for computer-assisted distal radius osteotomy, in which computer-generated patient-specific plastic guides were used for intra-operative guidance. Our hypothesis was that these guides combine the accuracy and precision of computer-assisted techniques with the ease of use of mechanical guides.

Method: In a consecutive series of 9 patients we tested the accuracy of the proposed method. Prior to surgery, CT scans were obtained of both radii and ulnae in neutral rotation. Three-dimensional virtual models for both the affected and unaffected radius and ulna were created. The models of the unaffected radius and ulna were reflected to serve as a template for the correction. Custom-made software was used to plan the correction. The locations of the distal and proximal drill holes for the plate were saved and the locations of the distal holes before the osteotomy were determined. The design of a patient-specific instrument guide was calculated, into which a mirror image of intra-operative accessible bone structure of the distal radius was integrated. This allowed for unique positioning of the guide intra-operatively. For each planned drill location a guidance hole was incorporated into the guide. A plastic model of the guide was created using a rapid prototyping machine. Intra-operatively, a conventional incision was made and the guide was positioned on the distal end of the radius. The surgeon drilled the holes for the plate screws into the intact radius. The guide was removed and the surgeon performed the osteotomy using the conventional technique and shaved the bone from the distal radius fragment to accommodate the plate. Using the pre-drilled holes the plate was affixed to the distal radius fragment. The distal fragment was reduced until the proximal screw holes in the plate aligned with the pilot holes in the bone. To analyze the accuracy of the intra-operative procedure we compared the post-operative alignment of the radius with the planned alignment. A lateral and an A/P digitally reconstructed radiograph (DRR) of the plan were calculated. These DRRs were used to evaluate the radial inclination, the volar tilt and the ulnar variance of the planned alignment. Post-operative lateral and A/P X-Rays were used to determine the same three post-operative radiographic indices. The post-operative values were compared with the planned values.

Results: We found an average deviation for the radial inclination of 0.5°(StDev 1.8), for the volar tilt of 0.7°(StDev 2.3), and for the ulnar variance of 0.8mm (StDev 1.9).

Conclusion: These results show that the computer-generated instrument guides accurately achieved the planned alignment. The guides were easy to integrate into the surgical workflow and eliminated the need for intra-operative fluoroscopy for guidance of the procedure.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 572 - 573
1 Nov 2011
Pichora D Ma B Kunz M Alsanawi H Rudan J
Full Access

Purpose: We compare the accuracy and precision of patient-specific plastic guides versus computer-assisted navigation for distal radius osteotomy (DRO). We hypothesize that guides would provide similar accuracy and precision compared to computer-assisted surgery, and that they would be faster to use than navigated surgery.

Method: We used CT scans, computer models, and planned corrections of radii from seven patients who had previously received computer-assisted DRO. The planned correction included the locations and directions of the screw holes for the fixation plate on the intact deformed radius. Using computer-assisted technique, the surgeon drills the holes for the fixation plate using computer navigation before performing the osteotomy; after cutting the radius, the plate is fixated to the distal radius, and the distal radius is distracted until the holes in the proximal radius align with the holes of the fixation plate. A patient-specific guide can be manufactured that fits on the intact deformed radius to guide the drilling of the screw holes. The guide is designed so that it mates exactly with the dorsal surface of the radius. Each guide was designed using custom software and manufactured in ABS plastic using a 3D printer. The surgeon places the guide on the radius and uses a metal drill sleeve in each guide hole to guide the drilling of the plate screw holes. We manufactured urethane plastic phantoms of the seven deformed radii. Our laboratory experiment had six surgeons each perform four computer-assisted and four patient-specific guide procedures on the phantom radii; the specimen and type of guidance were randomly chosen. The time from the start of the procedure to when the shaping of the distal radius was completed was recorded; we did not record the time required to cut and fixate the radius because this time does not depend on the type of guidance used. The plated phantoms were assessed for errors in ulnar variance, radial inclination, and volar tilt as compared to the planned correction.

Results: The results for the computer-assisted procedures were: ulnar variance error (−0.2 +/ − 2.0 mm), radial inclination error (−0.9 +/ − 6.1 deg), volar tilt error (−0.9 +/ − 1.9 deg). The results for the customized jig procedures were: ulnar variance error (−0.7 +/ − 0.6 mm), radial inclination error (−1.0 +/ − 1.4 deg), volar tilt error (−0.4 +/ − 2.2 deg). There were no significant differences detected in the means of the measurements (significance level 0.05) using the two-sample t-test. Significant differences were detected in the variances of the ulnar variance and radial inclination errors (significance level 0.05) using Levene’s test. It took (705 +/ − 144 sec) to perform the computer-assisted procedures and (214 +/ − 98 sec) to perform the customized guide procedures. The differences between the means and variances were statistically significant.

Conclusion: Patient-specific guides are as accurate, more precise, and require less time than computer-assisted navigation for DRO.