Cell culture on tissue culture plastic (TCP) is widely used across biomedical research to understand the
Tissue repair is believed to rely on tissue-resident progenitor cell populations proliferating, migrating, and undergoing differentiation at the site of injury. During these processes, the crosstalk between mesenchymal stromal/stem cells (MSCs) and macrophages has been shown to play a pivotal role. However, the influence of extracellular matrix (ECM) remodelling in this crosstalk, remains elusive. Human MSCs cultured on tissue culture plastic (TCP) and encased within fibrin Previously, we demonstrated that culturing human MSCs within 3D-environments significantly enhances their immunoregulatory activity in response to pro-inflammatory stimuli. In this study, monocytes were co-cultured with MSCs within fibrin, acquiring a distinct M2-like repair macrophage phenotype in contrast to TCP co-cultures. MSC/macrophage CM characterization using a protein array demonstrated differences in release of several factors, including chemokines, growth factors and ECM components. Chondrocyte migration was significantly reduced in CM from untreated MSC/monocytes co-cultures in fibrin compared to CM of untreated MSCs/monocytes on TCP. This impact on migration was not seen with chondrocytes cultured in CM of monocytes co-cultured with pretreated MSCs in fibrin. The CM of monocytes co-cultured with pretreated MSCs in fibrin up-regulates COL2A1 and SOX9 compared to TCP. Chondrogenesis and migration were TGFβ dependent. MSC/macrophage crosstalk and responsiveness to cytokines are influenced by the ECM environment, which subsequently impacts tissue-resident cell migration and chondrogenesis. The direct effects of ECM on MSC/macrophage secretory phenotype is complemented by the dynamic ECM binding and release of growth factors such as TGFβ.
In relation to regenerative therapies in osteoarthritis and cartilage repair, mesenchymal stromal cells (MSCs) have immunomodulatory functions and influence macrophage behaviour. Macrophages exist as a spectrum of pro-(M1) and anti-(M2) inflammatory phenotypic subsets. In the context of cartilage repair, we investigated MSC-macrophage crosstalk, including specifically the priming of cartilage cells by macrophages to achieve a regenerative rather than fibrotic outcome. Human monocytes were isolated from blood cones and differentiated towards M1 and M2 macrophages. Monocytes (Mo), M1 and M2 macrophages were cultured directly and indirectly (trans-well system) with human bone marrow derived MSCs. MSCs were added during M1 polarisation and separately to already induced M1 cells. Outcomes (M1/M2 markers and ligands/receptors) were evaluated using RT-qPCR and flow cytometry. Influence on chondrogenesis was assessed by applying M1 and M2 macrophage conditioned media (CM) sequentially to cartilage derived cells (recapitulating an acute injury environment). RT-qPCR was used to evaluate chondrogenic/fibrogenic gene transcription.Abstract
Objectives
Methods
Tissue repair is believed to rely on tissue-resident progenitor cell populations proliferating, migrating, and undergoing differentiation at the site of injury. During these processes, the crosstalk between mesenchymal stromal/stem cells (MSCs) and macrophages has been shown to play a pivotal role. However, the influence of extracellular matrix (ECM) remodelling in this crosstalk, remains elusive. Human MSCs cultured on tissue culture plastic (TCP) and encased within fibrin in vitro were treated with/without TNFα and IFNγ. Human monocytes were cocultured with untreated/pretreated MSCs on TCP or within fibrin. After seven days, the conditioned media (CM) were collected. Human chondrocytes were exposed to CM in a migration assay. The impact of TGFβ was assessed by adding an inhibitor (TGFβRi). Cell activity was assessed using RT-qPCR and XL-protein-profiler-array.Abstract
Objectives
Methods
Cell culture on tissue culture plastic (TCP) is widely used across biomedical research to understand the in vivo environment of a targeted biological system. However, growing evidence indicates that the characteristics of cells investigated in this way differ substantially from their characteristics in the human body. The limitations of TCP monolayer cell cultures are especially relevant for chondrocytes, the cell population responsible for producing cartilage matrix, because their zonal organization in hyaline cartilage is not preserved in a flattened monolayer assay. Here, we contrast the response of primary human chondrocytes to inflammatory cytokines, tumor necrosis factor-alpha and interferon-gamma, via transcriptional, translational, and histological profiling, when grown either on TCP or within a 3D cell pellet (scaffold-less). We focus on anti-apoptotic (Bcl2), pro-apoptotic (Bax, Mff, Fis1), and senescent (MMP13, MMP1, PCNA, p16, p21) markers.Abstract
BACKGROUND
OBJECTIVE