Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 136 - 136
11 Apr 2023
Glatt V Woloszyk A Agarwal A
Full Access

Our previous rat study demonstrated an ex vivo-created “Biomimetic Hematoma” (BH) that mimics the intrinsic structural properties of normal fracture hematoma, consistently and efficiently enhanced the healing of large bone defects at extremely low doses of rhBMP-2 (0.33 μg). The aim of this study was to determine if an extremely low dose of rhBMP-2 delivered within BH can efficiently heal large bone defects in goats.

Goat 2.5 cm tibial defects were stabilized with circular fixators, and divided into groups (n=2-3): 2.1 mg rhBMP-2 delivered on an absorbable collagen sponge (ACS); 52.5 μg rhBMP-2 delivered within BH; and an empty group. BH was created using autologous blood with a mixture of calcium and thrombin at specific concentrations. Healing was monitored with X-rays. After 8 weeks, femurs were assessed using microCT.

Using 2.1 mg on ACS was sufficient to heal 2.5 cm bone defects. Empty defects resulted in a nonunion after 8 weeks. Radiographic evaluation showed earlier and more robust callus formation with 97.5 % (52.5 μg) less of rhBMP-2 delivered within the BH, and all tibias were fully bridged at 3 weeks. The bone mineral density was significantly higher in defects treated with BH than with ACS. Defects in the BH group had smaller amounts of intramedullary and cortical trabeculation compared to the ACS group, indicating advanced remodeling.

The results confirm that the delivery of rhBMP-2 within the BH was much more efficient than on an ACS. Not only did the large bone defects heal consistently with a 40x lower dose of rhBMP-2, but the quality of the defect regeneration was also superior in the BH group. These findings should significantly influence how rhBMP-2 is delivered clinically to maximize the regenerative capacity of bone healing while minimizing the dose required, thereby reducing the risk of adverse effects.