Tendinopathy is one of the most common orthopaedic pathological conditions characterized by tendon degenerative changes. Excessive mechanical loading is considered as a major causative factor in the development of tendinopathy, but the mechanisms of pathogenesis remain unclear. High mobility group box-1 (HMGB1), a potent inflammatory mediator when released into the matrix, has been identified in the early stage tendinopathy patients. Since the release and contribution of HMGB1 in tendinopathy development due to mechanical overloading is unknown, we investigated the role of HMGB1 in tendinopathy using a mouse intensive treadmill running (ITR) model and injection of glycyrrhizin (GL), a specific inhibitor of HMGB1. A total of 48 mice were divided into four groups, Cage Control group: The animals were allowed to move freely in their cage, GL group: The animals were received daily IP injection of GL (50 mg/kg body weight) for 24 weeks, ITR group: The animals ran on treadmill at 15 meters/min for three h/ day, five days a week for 12 or 24 weeks, GL+ITR group: The animals ran the same protocol as that of ITR group plus daily IP injection of GL for 12 or 24 weeks. Six mice/group were sacrificed at 12 or 24 weeks and the Achilles and patellar tendon tissues were harvested and used for histochemical staining and immunostaining. Mechanical overloading induced HMGB1 released from the cell nuclei to the matrix (Fig. 1a, b) caused tendon inflammation (Fig. 1c, d) and led to tendon degenerative changes (Fig. 1e-j). After 12 weeks of ITR, the tendon tissue near the bone insertion site showed typical tendinopathic changes in cell shape, accumulation of glycosaminoglycans (GAG) (Fig. 1e, f), and increase in SOX-9 staining (Fig. 1g-j). After 24 weeks ITR, the distal site of Achilles tendon showed considerable changes in cell shape (Fig. 2A, g, arrows), which is round compared to more elongated in the control and GL groups (Fig. 2A, e, f). However, daily treatment with GL prior to ITR blocked the cell shape change (Fig. 2A, h) and, ITR induced extensive GAG accumulation in ITR group (Fig. 2B, bottom panel). Furthermore, GL inhibited ITR-induced expression of chondrogenic markers (SOX-9 and collagen II) in the tendons (Fig. 3). Our results showed that mechanical overloading-induced HMGB1 plays a critical role in the development of tendinopathy by initiating tendon inflammation and eventual degeneration characterized by the presence of chondrocyte-like cells, accumulation of proteoglycans, high levels of collagen type II production, and chondrogenic marker SOX-9 expression. These results provide the first evidence for the role of HMGB1 as a therapeutic target to prevent tendinopathy before its onset and block further development at its early inflammation stages. The inhibition of tendinopathy development by GL administration in this study also suggests the putative therapeutic potential of this natural triterpene that is already in clinical use to treat other inflammation-related diseases. For any figures or tables, please contact authors directly.
Due to tumours or bone fractures caused by high mechanical impact, the affected tissue has to be removed. Preserving the physiological mobility after the treatment could prevent stress shielding or overload of the surrounding muscles and ligaments. In case of a critical vertebral body defect, the body and its attached disks have to be removed. Thereafter the adjacent vertebral bodies are braced together resulting in limited physiological spine movability. A flexible implant adapted to and preserving the patient-specific physiological spine mobility would be a desirable solution. Since Ti6Al4V is a common material for medical implants as well as in AM, it is used in this scientific study. Using design methodology tools, a systematic generation of possible solutions is achieved. Furthermore, already existing solid state hinges made of plastics with AM are taken as archetype and their design is adapted to the metal laser powder bed fusion (L-PBF) process. Therefore, an initial geometry design, based on a solid state hinge demonstrator made by TNO was created with Inventor 2016. By abstracting the vertebrae body segment, two contact surfaces, two joints with rotational degree of freedom (DOF) and axial suspension as well as one solid connection could be identified. As a first implant design, the abstracted joints are replaced by the designed hinges. By the application of simulation software tools the flexion behaviour of the solid state hinge can be analysed. Initial results show that the simulation of the flexion behaviour corresponds with the AM specimen. The applied force necessary for bending the specimen depends on the thickness of the struts.
Navigation of acetabular component orientation is still not commonly performed despite repeated studies that show that more than ½ of acetabular components placed during hip arthroplasty are significantly mal-positioned and that intra-operative radiographic assessment is unreliable. The current study uses postoperative CT to assess the accuracy of a smart mechanical navigation instrument system for cup alignment. Thirty seven hip replacements performed using a smart mechanical navigation device (the HipXpert System) had post-operative CT studies available for analysis. These post-operative CT studies were performed for pre- operative planning of the contralateral side, one to three years following the prior surgery. An application specific software module was developed to measure cup orientation using CT (HipXpert Research Application, Surgical Planning Associates Inc., Boston, Massachusetts). The method involves creation of a 3D surface model from the CT data and then determination of an Anterior Pelvic Plane coordinate system. A multiplaner image viewer module is then used to create an image through the CT dataset that is coincident with the opening plane of the acetabular component. Points in this plane are input and then the orientation of the cup is calculated relative to the AP Plane coordinate space according to Murray's definitions of operative anteversion and operative inclination. The actual cup orientation was then compared to the goal of cup orientation recorded when the surgery was performed using the system for acetabular component alignment.Introduction
Patients and Methods
Cup malpositioning remains a common cause of dislocation, wear, osteolysis, and revision. The concept of a “Safe Zone” for acetabular component orientation was introduced more than 35 years ago1. The current study assesses CT studies of replaced hips to assess the concept of a safe zone for acetabular orientation by comparing the orientation of acetabular components revised due to recurrent instability and to a series of stable hip replacements. Cup orientation in 50 hips revised for recurrent instability was measured using CT. These hips were compared to a group of 184 stable hips measured using the same methods. Femoral anteversion in the stable hips was also measured. Images to assess femoral anteversion in the unstable group were not available. An application specific software modules was developed to measure cup orientation using CT (HipSextant Research Application 1.0.13 Surgical Planning Associates Inc., Boston, Massachusetts). The cup orientation was determined by first identifying Anterior Pelvic Plane Coordinate system landmarks on a 3D surface model. A multiplanar reconstruction module then allowed for the creation of a plane parallel with the opening plane of the acetabulum. The orientation of the cup opening plane in the AP Plane coordinate space was calculated according to Murray's definitions of operative anteversion and operative inclination2. Both absolute cup position relative to the APP and tilt-adjusted cup position3 were calculated.Introduction
Methods
Diabetes mellitus is the most common co-morbidity associated
with necrotising fasciitis. This study aims to compare the clinical
presentation, investigations, Laboratory Risk Indicator for Necrotising
Fasciitis (LRINEC) score, microbiology and outcome of management
of this condition in diabetic and non-diabetic patients. The medical records of all patients with surgically proven necrotising
fasciitis treated at our institution between 2005 and 2014 were
reviewed. Diagnosis of necrotising fasciitis was made on findings
of ‘dishwater’ fluid, presence of greyish necrotic deep fascia and
lack of bleeding on muscle dissection found intra-operatively. Information
on patients’ demographics, presenting symptoms, clinical signs,
investigations, treatment and outcome were recorded and analysed.Aims
Patients and Methods
Cup malpositioning remains a common cause of dislocation, wear, osteolysis, and revision. The concept of a “Safe Zone” for acetabular component orientation was introduced more than 35 years ago1. The current study assesses CT studies of replaced hips to assess the concept of a safe zone for acetabular orientation by comparing the orientation of acetabular components revised due to recurrent instability and to a series of stable hip replacements. Cup orientation in 30 hips revisedin 27patients for recurrent instability was measured using CT. These hips were compared to a group of 115 stable hips measured using the same methods. Femoral anteversion in the stable hips was also measured. Images to assess femoral anteversion in the unstable group were not available. An application specific software modules was developed to measure cup orientation using CT (HipSextant Research Application 1.0.13 Surgical Planning Associates Inc., Boston, Massachusetts). The cup orientation was determined by first identifying Anterior Pelvic Plane Coordinate system landmarks on a 3D surface model. A multiplanar reconstruction module then allowed for the creation of a plane parallel with the opening plane of the acetabulum. The orientation of the cup opening plane in the AP Plane coordinate space was calculated according to Murray's definitions of operative anteversion and operative inclination2. Both absolute cup position relative to the APP and tilt-adjusted cup position3 were calculated.INTRODUCTION
METHODS
Cup malpositioning remains a common cause of dislocation, wear, osteolysis, and revision. The concept of a “Safe Zone” for acetabular component orientation was introduced more than 35 years ago. The current study assesses CT studies of replaced hips to assess the concept of a safe zone for acetabular orientation. We assessed the orientation of acetabular components revised due to recurrent instability and compared the results to a series of stable hip replacements.BACKGROUND
PURPOSE
The purposes of this study are as follows; 1) to compare postoperative blood loss between general anesthesia(GA) and spinal anesthesia(SA) and 2) to analyze the affecting factors of postoperative blood loss through the subgroup analysis. A retrospective analysis was made on the clinical data of 122 patients with osteoarthritis undergoing primary TKA between January 2012 and December 2013. According to different anesthetic method, the patients were divided into the General Anesthesia group (73 cases) and the Spinal Anesthesia group (49 cases). Each group was divided subgroup as age, BMI, Preoperative blood pressure, Surgery time, Torniquet time, INR. The total blood loss, Post Operation 1 day blood loss, hidden blood loss, and the percentage of hidden blood loss were compared between 2 groups. For the analysis of postoperative blood loss, each group was compared postoperative blood loss using hemovac drainage per day and total blood loss. In preoperative blood pressure, Higher than 140 mmHg in systolic blood pressure and higher than 90 mmHg in diastolic blood pressure were employed as a cut-off value to group the well-controlled hypertension group(n=42) and uncontrolled hypertension group(n=29)Purpose
METHODS
Reverse total shoulder arthroplasty continues to have a high complication rate, specifically with component instability and scapular notching. Therefore, the purpose of this study was to quantify the effects of humeral component neck angle and version on impingement free range of motion. A total of 13 cadaveric shoulders (4 males and 9 females, average age = 69 years, range 46 to 96 years) were randomly assigned to two studies. Study 1 investigated the effects of humeral component neck angle (n=6) and Study 2 investigated the effects of humeral component version (n=7). For all shoulders, Tornier Aequalis® Reversed Shoulder implants (Edina, MN) were used. For study 1, the implants were modified to 135, 145 and 155 degree humeral neck shaft angles and for Study 2 a custom implant that allowed control of humeral head version were used. For biomechanical testing, a custom shoulder testing system that permits independent loading of all shoulder muscles with six degree of freedom positioning was used. (Figure 1) Internal control experimental design was used where all conditions were tested on the same specimen.Introduction
Methods
Studies show that cup malpositioning using conventional techniques occurs in 50 to 74% of cases defined. Assessment of the utility of improved methods of placing acetabular components depends upon the accuracy of the method of measuring component positioning postoperatively. The current study reports on our preliminary experience assessing the accuracy of EOS images and application specific software to assess cup orientation as compared to CT. Eighteen patients with eighteen unilateral THA had pre-operative EOS images were obtained for preoperative assessment of leg-length difference and standing pelvic tilt. All of these patients also had preoperative CT imaging for surgical navigation of cup placement. This allows us to compare cup orientation as measured by CT to cup orientation as measured using the EOS images. Application specific software modules were developed to measure cup orientation using both CT and EOS images (HipSextant Research Application 1.0.13 Surgical Planning Associates Inc., Boston, Massachusetts). Using CT, cup orientation was determined by identifying Anterior Pelvic Plane coordinate system landmarks on a 3D surface model. A multiplanar reconstruction module allows for creation of a plane parallel with the opening plane of the acetabulum and subsequent calculation of plane orientation in the AP Plane coordinate space according to Murray's definitions of operative anteversion and operative inclination. Using EOS DICOM images, spatial information from the images were used to reconstruct the fan beam projection model. Each image pair is positioned inside this projection model. Anterior Pelvic Plane coordinate points are digitized on each image and back-projected to the fan beam source. Corresponding beams are then used to compute the 3D intersection points defining the 3D position and orientation of the Anterior Pelvic Plane. Ellipses with adjustable radii were then used to define the cup border in each EOS image. By respecting the fan beam projection model, 3D planes defining the projected normal of the ellipse in each image are computed. 3D implant normal was estimated by determining 3D plane intersection lines for each image pair. Implant center points are defined by using the back-projected and intersected ellipse center beams in the image pairs (Figure 1).Introduction
Methods
Cup malposition in hip arthroplasty and hip resurfacing is associated with instability, accelerated wear, and the need for revision. A recent study measuring cup orientation on conventional radiodiographs demonstrated an incidence of cup malpositioning of 50% according to the safe zone that they defined 1,2. A prior study of 105 conventionally placed cups using CT demonstrated a cup malpositioning incidence of 74%3. The current study similarly assesses the variation in cup position using conventional techniques as measured by CT. CT studies of 123 hips in 119 patients with total hip arthroplasties performed using conventional techniques were used for this study. The indications for the CT studies were for CT-based surgical navigation of the contralateral side or for assessment of periprosthetic osteolysis. An application specific software modules was developed to measure cup orientation using CT (HipSextant Research Application 1.0.13 Surgical Planning Associates Inc., Boston, Massachusetts). The cup orientation was determined by first identifying Anterior Pelvic Plane Coordinate system landmarks on a 3D surface model. A multiplanar reconstruction module then allowed for the creation of a plane parallel with the opening plane of the acetabulum. The orientation of the cup opening plane in the AP Plane coordinate space was calculated according to Murray's definitions of operative anteversion and operative inclination. Since these studies including images through the femoral condyles, femoral anteversion could be measured on these hips as well (Osirix v5.6, Pixmeo SARL, Bernex, Switzerland).Introduction
Methods
The radiologic and clinical results of High Tibial Osteotomies (HTO) strongly rely on the accuracy of correction, and inadequate intraoperative measurements of the leg axis can lead to over or under- correction. Over the past few years, navigation systems have been proven that navigation systems provide reliable real-time intro-operative information, may increase accuracy, and improves the precision of orthopaedic surgeries. We assessed the radiological and clinical results of navigation- assisted open wedge HTO versus conventional HTO at 24 months after surgery. A total of sixty-five open wedge HTOs were performed using navigation system and compared with forty-six open HTOs that had been performed using the conventional cable technique in terms of intraoperative leg axis assess. The Orthopilot navigation system (HTO version 1.3, B. Braun Aesculap, Tuttligen, Germany) used throughout the procedure of navigated open wedge HTO. The aim of the correction was to achieve of 3°of valgus (2–4°) on both method. For the radiological evaluation, postoperative leg axes were examined using weight bearing full-leg radiography obtained at postoperative two years after surgery. To assess correction accuracies, we compared mechanical tibiofemoral angles and intersections of the mechanical axis of the tibial plateau (%) in both groups. Outliers were defined as under-corrections of < 2° of valgus and as over-corrections of > 5° of valgus. The posterior slope of the proximal tibia was measured using the proximal tibial anatomical axis (PTAA) method. HSS (Hospital for Special Surgery) scores and ROMs (ranges of motion) were evaluated and all complications were recorded and surgical and radiation times were measured. Navigated HTOs corrected mechanical axes to 2.8° valgus (range −3.1∼5.3) with few outliers (9.5%), and maintained posterior slopes (8.5±2.3° preoperatively and 11.0±2.8° postoperatively) (P>0.05). In the conventional group, the mean valgus correction was satisfactory (2.2° valgus), but only 67.4% were within the required range (2∼5° valgus), and 26.1% of cases were under-corrected and 6.5% of cases were over-corrected. Posterior slope increased from 8.0° to 10.6° on average without significant change after surgery. Total fluoroscopic radiation time during navigated HTO was 8.1 seconds (5∼12s) as compared with 46.2 seconds (28∼64 s) during conventional HTO (p<0.05). The surgery time for navigated HTO was 11.2 minutes longer than for conventional HTO (55.5 minutes). No specific complications related to the navigation were encountered. At clinical follow up, mean HSS scores of the navigated HTO and conventional groups improved to 91.8 and 92.5 from preoperative values of 55.3 and 55.9, respectively (p>0.05), and all patients achieved full ROM. Navigation for HTO significantly improved the accuracy of postoperative leg axis, and decreased the variability of correction with fewer outliers, and without any complications. Moreover, it allows multi-plane measurements to be made, in the sagittal and transverse planes as well as the frontal plane intra-operatively in real time, compensates to some extent for preoperative planning shortcomings based on radiography, and significantly reduces radiation time.
Cup malposition leads to increased incidences of dislocation, impingement, wear, and revision. The HipSextant navigation system is a smart mechanical navigation device designed to indicate correct cup orientation at surgery. The current study assesses the effect of deliberately mis-docking the device on clinical accuracy. Ten patients (5 men and 5 women) presenting for total hip arthroplasty were assessed. Planning for the HipSextant Navigation System (Surgical Planning Associates, Inc., Boston, MA) was performed as usual. This is done by first creating a 3D surface model from CT imaging, establishing an Anterior Pelvic Plane coordinate system, and then creating a patient-specific HipSextant coordinate system. This coordinate system is defined by three points. The first point, called the basepoint, is located just behind the posterior wall of the acetabulum a fixed distance above the infracotyloid notch. The second point is located on the lateral aspect of the anterior superior iliac spine. The third point is located on the surface of the ilium and equally distant from the other two points. These three points define a patient-specific coordinate system that is known relative to the APP. Clinically, the instrument is then docked according to the plan and two protractors on the top of the instrument allow a direction indicator to point in the direction of desired cup orientation. For each of the hips, after the HipSextant plan was created (Figure 1), two additional plans were created: one where the basepoint was docked 5 mm closer to and one 5 mm further from the infracotyloind notch. The effect of the deliberate mis-docking was measured in degrees of operative anteversion and operative inclination.Introduction:
Methods:
Antibiotic-loaded cement has been used over decades as a local antibiotic delivery for the treatment of bone and joint infections. However, there were some disadvantages such as unpredictable elution, insufficient local concentration and reduced mechanical strength. We developed hydrophilized bone cement and investigated whether it can improve consistent antibiotic release for extended periods to be effective in eradicating joint infection without any changes of mechanical strength. The experiments consists of preparation of the hydrophilized, vancomycin-loaded bone cement, In vitro test including drug release behavior, mechanical properties by compression test, cytotoxicity, antibacterial effect and animal study. In animal study, Antibiotic cement rod was implanted in the femur of rat osteomyelitis model. Sign of infections were assessed by gross observation, Micro CT and blood analysis at indicated period.Background
Methods
Wear, wear-associated osteolysis, and instability are the most common reasons for revision total hip arthroplasty. These failures have been shown to be associated with acetabular component malpositioning. However, optimal acetabular component orientation on a patient-specific basis is currently unknown. The current study uses CT to assess acetabular orientation in a group of unstable hips as compared to a control group of stable hips. Our institutional database of CT studies performed in the region of the hip beginning in February of 1998 (41,975 CT studies) was compared against our institutional database of revision total hip arthroplasties beginning in August of 2003 (2262 Revision THA) to identify CT studies of any hip treated for recurrent instability by revision of the acetabular component. Twenty hips in 20 patients with suitable CT studies were identified for the study group. Our control group consisted of 99 hips in 93 patients who had CT studies either for computer-assisted surgery on the contralateral side or for assessment of osteolysis. Using the CT data, the AP plane (APP) was defined, supine pelvic tilt was measured, and cup orientation was calculated by fitting a best fit plane to 6 points on the rim of the acetabular component. Cup orientation was calculated in degrees of operative anteversion and operative inclination according to the definitions of Murray. Both absolute cup position relative to the APP and tilt-adjusted cup position1 were calculated.Introduction:
Methods:
Cup malposition in hip arthroplasty and hip resurfacing is associated with instability, accelerated wear, and the need for revision. A recent study measuring cup orientation on conventional radiodiographs demonstrated an incidence of cup malpositioning of 50% according to the safe zone that they defined1,2. A prior study of 105 conventionally placed cups using CT demonstrated a cup malpositioning incidence of 74%3. The current study similarly assesses the variation in cup position using conventional techniques as measured by CT. We have performed CT-based navigation of hip arthroplasty and revision arthroplasty on a routine basis since 2003 and also use CT imaging to quantify periprosthetic osteolysis. In our image database from these, we have identified 98 hips and y patients who had a previously conventionally-placed cup on CT imaging. For each hip, cup orientation was determined in operative anteversion and operative inclination (according to the definitions of Murray) using an application specific software application (HipSextant Research Application 1.0.7, Surgical Planning Associates Inc., Boston, Massachusetts). This application allows for determination of the Anterior Pelvic Plane coordinates from a 3D surface model. A multiplanar reconstruction module allows for creation of a plane parallel with the opening plane of the acetabulum and subsequent calculation of plane orientation in the AP Plane coordinate space.Introduction:
Methods:
While more than ½ of acetabular components placed during hip arthroplasty are significantly malpositioned, traditional surgical navigation and robotoics have not been widely adopted. This may be due to the additional time, expense, and complexity associated with this technology. As an alternative, smart mechanical navigation instruments, adjusted on a patient-specific basis, have been introduced to address the problem of cup malorientation. The current study assesses the accuracy of acetabular component alignment using a mechanical navigation instrument. The acetabular component was aligned in 58 consecutive hips in 58 patients using the HipSextant Mechanical Navigation System (Surgical Planning Associates, Inc. Boston, MA). The technique involves using a patient-specific plan and associated software. In planning for surgery, CT data are used to create a 3D model and to define the anterior pelvic plane (APP). A patient-specific HipSextant docking coordinate system is then determined by three points: one just behind the posterior acetabular rim, a second on the lateral side of the ASIS, and a third on the surface of the ilium (Figure 1). The HipSextant itself has two adjustable orthogonal protractors (in-plane and off-plane angle) and two adjustable arms so that the instrument is adjusted for each patient based on their specific anatomy. The instrument docks directly to the pelvis so the recommended orientation of the acetabular component is based on the actual position of the pelvis at the time of component implantation. A direction indicator points in the direction of the planned cup orientation (Figure 2). Cup alignment was further enhanced with the use of a parallel guide to improve parallel visualization (Figure 3). Postoperative cup orientation was measured using a validated two-dimensional/three-dimensional matching method [3,5].Background:
Patients and Methods:
Conventional methods of aligning the acetabular component during hip arthroplasty and hip resurfacing often rely upon anatomic information available to the surgeon. Such anatomical information includes the transverse acetabular ligament and the locations of the pubis, ischium and ilium. The current study assesses the variation in orientation of the plane defined by the pubis, ischium and ilium on a patient-specific basis as measured by CT. To assess the reliability of anatomical landmarks in surgery, we assessed 54 hips in 51 patients (32 male, 22 female) who presented for CT-based surgical navigation of total hip arthroplasty. The HipSextant Research Application (version 1.0.7, Surgical Planning Associates Inc., Boston, Massachusetts) was used to perform the calculations. This application allows for determination of the Anterior Pelvic Plane coordinates from a 3D surface model. Standardized points on the ilium, ischium, and pubis were entered. These three points defined a plane and the orientation of the plane in the AP Plane coordinate system was calculated in degrees of operative anteversion and operative inclination according to the definitions of Murray1.Introduction:
Methods:
The aim of this audit was to assess the union rate of humeral shaft fractures treated conservatively in a functional brace in our unit, compared to a “gold standard” of 98% as reported by Sarmiento (JBJS 1977). A retrospective clinical and radiographic review of 155 closed humeral shaft fractures managed with a humeral brace from 2005–2012 was performed. Pathological fractures and patients under 18 were excluded. The mean age was 60 (18–94) with 45 males and 72 females. 15 (10%) patients under 18 and 8 (5%) pathological fractures were excluded; 15 (10%) patients were lost to follow up. Of the remaining 117 fractures, 83 (71%) went on to union and 34 (29%) developed a non-union. Mean time to union was 131 days (47–622). 80% of distal fractures and 75% of midshaft fractures united but only 58% of proximal fractures went on to unite. There was no significant difference in union rates between multi fragmentary (> 3 parts) and simple fracture patterns (69% vs 71% respectively). Our study suggests that a lower threshold for operative intervention of proximal third humeral shaft fractures may be required.
Half of all acetabular components placed using conventional methods are malpositioned1. The HipSextant™ Navigation System (Surgical Planning Associates, Boston, MA) is a mechanical navigation system, adjusted on a patient-specific basis, designed to achieve appropriate cup alignment as simply and rapidly as possible. The current study assesses the surgeon's ability to register and track the pelvis and align the cup using the system. A bioskills model pelvis (Pacific Research Laboratories, Inc., Vashon, WA) was prepared by placing screws to mark the anterior pelvic plane points and by inserting a long cup alignment pin, simulating a cup insertion handle, into the acetabulum. The bone model was then scanned using CT. The HipSextantTM Navigation System Planning Application was then used to plan the use of the HipSextant for the surgery. This is accomplished by creating a 3D model, designating the AP plane (marked by the screws), and then determining the HipSextant docking points. One of these three points is behind the posterior wall of the acetabulum (the basepoint). The second of these three points is on the lateral aspect of the anterior superior iliac spine. The third point, the landing point, is located on the surface of the ilium and equally distant from the other two points (Figure 1). The two protractors on the HipSextant planning application were then adjusted to be parallel with the cup alignment pin on the bone model. A surgeon and assistant were then asked to dock the HipSextant on the bone model and to visually align the direction indicator to be parallel with the cup alignment pin. The two protractor angles on the instrument were recorded. This allowed for calculation of error in operative anteversion and operative inclination between the plan and the actual alignment that was accomplished. Four pairs of surgeon and assistant each performed the docking and alignment procedure 10 times for a total of 40 measurements.Introduction
Methods