Abstract. Objectives. Stem malalignment in total hip arthroplasty (THA) has been associated with poor long-term outcomes and increased complications (e.g. periprosthetic femoral fractures). Our understanding of the biomechanical impact of stem alignment in cemented and uncemented THA is still limited. This study aimed to investigate the effect of stem fixation method, stem positioning, and compromised bone stock in THA. Methods. Validated FE models of cemented (C-stem – stainless steel) and uncemented (Corail – titanium) THA were developed to match corresponding experimental model datasets; concordance correlation agreement of 0.78 & 0.88 for cemented & uncemented respectively. Comparison of the aforementioned stems was carried out reflecting decisions made in the current clinical practice. FE models of the implant positioned in varus, valgus, and neutral alignment were then developed and altered to represent five different bone defects according to the Paprosky classification (Type I – Type IIIb). Strain was measured on the femur at 0mm (B1), 40mm (B2), and 80mm (B3) from the lesser trochanter. Results. Cemented constructs had lower strain on the implant neck, and higher overall stiffness and strain on bone compared to uncemented THA. Strain on the bone increased further down the shaft of the femoral diaphysis, and with progressing bone defect severity in all stem alignment cases. Highest strain on the femur was found at B2 in all stem alignment and bone defect models. Varus alignment showed higher overall femoral strain in both fixation methods. Interestingly, in uncemented models, highest strain was shown on femoral bone proximally (B1-B2) in
Medial meniscus tear has been proposed as a potential etiology of spontaneous osteonecrosis of the knee (SONK). Disruption of collagen fibers within the meniscus causes meniscal extrusion, which results in alteration in load distribution in the knee. A recent study has demonstrated high incidence of medial meniscus extrusion in the knee with SONK. Our purpose was to determine whether the extent of medial meniscus extrusion correlates with the severity of SONK in the medial femoral condyle. Anteroposterior and lateral knee radiographs were taken with the patients standing. Limb alignment was expressed as the femorotibial angle (FTA) obtained from the anteroposterior radiograph. The stage of progression of SONK was determined according to the radiological classification system described by Koshino. After measurement of anteroposterior, mediolateral, and superoinferior dimensions of the hypointense T1 signal intensity lesion of MRI, its ellipsoid volume was calculated with the three dimensions. Meniscal pathology (degeneration, tear, and extrusion) were also evaluated by MRI. Of the 18 knees with SONK, we found 5 knees at the radiological stage 2 lesions, 9 knees at the stage 3, and 4 knees at the stage 4. Whereas the ellipsoid volume of SONK lesion significantly increased with the stage progression, the volume was significantly greater at stage 4 than stage 2 or 3. All the 18 knees with SONK in the present study showed substantial extrusion (> 3mm) and degeneration of the medial meniscus. While medial meniscal extrusion increased with the stage progression, medial meniscus was significantly extruded at stage 3 or 4 compared with stage 2. A significant increase in FTA was found with the stage progression. FTA was significantly greater at stage 4 than stage 2 or 3. Multiple linear regression analysis revealed that medial meniscus extrusion and FTA were useful predictors of the volume of SONK lesion. This study has clearly shown a significant correlation between the extent of medial meniscus extrusion and the stage and volume of SONK lesion. Degeneration and tears of the medial meniscus in combination with extrusion may result in loss of hoop stress distribution in the medial compartment, which could increase the load in the medial femoral condyle. In addition to meniscal pathology, knee alignment can influence load distribution in the medial compartment biomechanically. Multiple linear regression analysis indicates that an increase in FTA concomitant with a greater extrusion of medial meniscus could result in greater lesion and advanced radiological stage of SONK. Taken together, alteration in compressive force transmission through the medial compartment by meniscus extrusion and
Total knee arthroplasty (TKA) is a common orthopaedic procedure with over 1,500 done in 2016 in Ireland alone. 96% of all TKAs are due to pain in the knee associated with osteoarthritis. According to the UK National Joint Registry (NJR), there is a 0.47%, 1.81%, 2.63% and 4.34% probability risk of undergoing a revision TKA within one, three, five and ten years respectively post-index surgery. A variety of reasons for failure of TKA have been described in the literature including infection, aseptic loosening, pain, instability, implant wear, mal-alignment, osteolysis, dislocation, peri-prosthetic fracture and implant fracture. The NexGen Posterior Stabilised Fixed has NJR revision rates of 0.44%, 1.61% and 2.54% at years one, three and five respectively. A retrospective review was carried out of 350 NexGen TKAs that were performed directly by, or under the supervision of, a fellowship trained arthroplasty surgeon in a dedicated orthopaedic hospital between April 2013 and December 2015. 26 (7.4%) of these were revised as of 31 December 2017. Three were for septic arthritis with the remaining 23 (6.6%) for aseptic loosening. Patients typically started to experience symptoms of medial tibial pain with supra-patellar swelling from a combination of effusion and synovial thickening at 12–24 months. Inflammatory markers were normal in all cases. Radiographs of symptomatic knee replacements showed bone loss on the medial tibia with a tilt of the tibial component into a
Background. Since 2011, the knee service at the Nuffield Orthopaedic Centre has been offering a neutralising medial opening wedge high tibial osteotomy (HTO) to a group of patients presenting with early medial osteoarthritis of the knee,
Background. The optimal reference for rotational positioning of femoral component in total knee replacement (TKR) is debated. Navigation has been suggested for intra-op acquisition of patient's specific kinematics and functional flexion axis (FFA). Questions/Purposes. To prospectively investigate whether pre-operative FFA in patients with osteoarthritis (OA) and
It is known that excessive
Summary Statement. A large proportion of knee arthroplasty patients are dissatisfied with their replacement. Significant differences exist between preoperative, postoperative and normal kinematics. A better understanding of the inter-relationships between kinematics, shape and prosthesis placement could lead to improved quality of life. Introduction. Knee kinematics are altered by total knee arthroplasty (TKA) both intentionally and unintentionally. Knowledge of how and why kinematics change may improve patient outcome and satisfaction through improved implant design, implant placement or rehabilitation. Comparing preoperative to postoperative kinematics and shape of the natural and replaced joint will allow an investigation of the inter-relationships between knee shape, prosthesis placement, knee kinematics and quality of life. Patients & Methods. Using a sequential-biplanar radiographic protocol that allowed imaging the preoperative and postoperative patellofemoral (PF) and tibiofemoral (TF) joints under weightbearing throughout the range of motion, we imaged and compared the 6 degree-of-freedom PF and TF kinematics of 9 pre-TKA subjects to those of 15 post-TKA subjects (Zimmer NexGen Legacy Posterior Stabilised Gender Solutions (GS) components). Using a novel computed tomography (CT) protocol, we obtained the femoral, tibial and patellar knee shapes, plus component placement after TKA. The same 9 pre-TKA subjects have now been re-imaged a minimum of one year postoperatively (DePuy Sigma Mobile Bearing cruciate-sacrificing components) to determine their changes in knee geometry and kinematics; full analysis is in progress. Results. Clear, statistically significant differences were seen between the kinematics of the pre-TKA and post-TKA groups. For the TF joint, the tibia was more posterior and inferior in the post-TKA group compared to the pre-TKA group (max 20 mm and 15 mm, respectively) (p<0.001). Subjects had neutral alignment in the post-TKA group compared to
Tibial bone density may affect implant stability and functional outcomes following total knee replacement (TKR). Our aim was to characterise the bone density profile at the implant-tibia interface following TKR in mechanical versus kinematic alignment. Pre-operative computed tomography scans for 10 patients were obtained. Using surgical planning software, tibial cuts were made for TKR either neutral (mechanical) or 3 degrees
Inter-subject variability is inherently present in patient anatomy and is apparent in differences in shape, size and relative alignment of the bony structures. Understanding the variability in patient anatomy is useful for distinguishing between pathologies and to assist in surgical planning. With the aim of supporting the development of stratified orthopaedic interventions, this work introduces an Articulated Statistical Shape Model (ASSM) of the lower limb. The model captures inter-subject variability and allows reconstructing ‘virtual’ knee joints of the lower limb shape while considering pose. A training dataset consisting of 173 lower limbs from CT scans of 110 subjects (77 male, 33 female) was used to construct the ASSM of the lower limb. Each bone of the lower limb was segmented using ScanIP (Simpleware Ltd., UK), reconstructed into 3D surface meshes, and a SSM of each bone was created. A series of sizing and positioning procedures were carried out to ensure all the lower limbs were in full extension, had the same femoral length and that the femora were aligned with a coincident centre. All articulated lower limbs were represented as: (femur scale factor) × (full extension articulated lower limb + relative transformation of tibia, fibula and patella to femur). Articulated lower limbs were in full extension were used to construct a statistical shape model, representing the variance of lower limb morphology. Relative transformations of the tibia, fibula and patella versus the femur were used to form a statistical pose model. Principal component analysis (PCA) was used to extract the modes of changes in the model. The first 30 modes of the shape model covered 90% of the variance in shape and the first 10 modes of the pose model covered 90% of the pose variance. The first mode captures changes of the femoral CCD angle and the
A total of 20 pairs of fresh-frozen cadaver femurs were assigned to four alignment groups consisting of relative varus (10° and 20°) and relative valgus (10° and 20°), 75 composite femurs of two neck geometries were also used. In both the cadaver and the composite femurs, placing the component in 20° of valgus resulted in a significant increase in load to failure. Placing the component in 10° of valgus had no appreciable effect on increasing the load to failure except in the composite femurs with varus native femoral necks. Specimens in 10° of varus were significantly weaker than the neutrally-aligned specimens. The results suggest that retention of the intact proximal femoral strength occurs at an implant angulation of ≥ 142°. However, the benefit of extreme valgus alignment may be outweighed in clinical practice by the risk of superior femoral neck notching, which was avoided in this study.
The understanding of rotational alignment of the distal femur is essential in total knee replacement to ensure that there is correct placement of the femoral component. Many reference axes have been described, but there is still disagreement about their value and mutual angular relationship. Our aim was to validate a geometrically-defined reference axis against which the surface-derived axes could be compared in the axial plane. A total of 12 cadaver specimens underwent CT after rigid fixation of optical tracking devices to the femur and the tibia. Three-dimensional reconstructions were made to determine the anatomical surface points and geometrical references. The spatial relationships between the femur and tibia in full extension and in 90° of flexion were examined by an optical infrared tracking system. After co-ordinate transformation of the described anatomical points and geometrical references, the projection of the relevant axes in the axial plane of the femur were mathematically achieved. Inter- and intra-observer variability in the three-dimensional CT reconstructions revealed angular errors ranging from 0.16° to 1.15° for all axes except for the trochlear axis which had an interobserver error of 2°. With the knees in full extension, the femoral transverse axis, connecting the centres of the best matching spheres of the femoral condyles, almost coincided with the tibial transverse axis (mean difference −0.8°,