Objectives. Mechanical wear and corrosion at the head-stem junction of total hip arthroplasties (THAs) (trunnionosis) have been implicated in their early revision, most commonly in metal-on-metal (MOM) hips. We can isolate the role of the head-stem junction as the predominant source of metal release by investigating non-MOM hips; this can help to identify clinically significant volumes of material loss and corrosion from these surfaces. Methods. In this study we examined a series of 94 retrieved metal-on-polyethylene (MOP) hips for evidence of corrosion and material loss at the taper junction using a well published visual grading method and an established roundness-measuring machine protocol. Hips were retrieved from 74 male and 20 female patients with a median age of 57 years (30 to 76) and a median time to revision of 215 months (2 to 324). The reasons for revision were loosening of both the acetabular component and the stem (n = 29), loosening of the acetabular component (n = 58) and infection (n = 7). No adverse tissue reactions were reported by the revision surgeons. Results. Evidence of corrosion was observed in 55% of hips. The median Goldberg taper corrosion score was 2 (1 to 4) and the annual rate of material loss at the taper was 0.084 mm. 3. /year (0 to 0.239). The median
The poor outcome of large head metal on metal total hip replacements (LHMOMTHR) in the absence of abnormal articulating surface wear has focussed attention on the
Summary. This work uses a mathematical method to correlate the forces calculated to push-on and pull off a femoral head from a stem and correlate the results of in vitro testing. Introduction. This work aimed to mathematically model the force needed to disassemble the THR unit for a given assembly load. This work then compared these results with the results of an in vitro experiment. The research presented aimed to determine the assembly forces necessary to prevent movement of the head on the stem through friction. By assessing the forces necessary to push the head onto the stem securely enough to prevent any movement of the head through friction, it is likely that the fretting and corrosion of the head taper interface will be reduced. Methods. Mathematical equations were used to define the relationship between the push-on force and the taper specification in terms of friction, contact area and taper angle. Similar relationships were determined for the pull-off force and torque-off force. Push-on loads of 1–4 kN were used to calculate the normal force and then the pull-off force and torque-off force for the combinations. Stems were chosen to represent the
Metal on metal hip replacements have been one of worst failures in recent years in terms of orthopaedic implants. Some of these devices have had catastrophic failure rates, with reports of 48% failure at 6 years. The failure of these devices has led to considerable suffering, pain and reduction in quality of life; consequently, they have given rise to high costs and multi-million-dollar legal cases. This talk will describe the history of the current metal on metal failure and discuss some of the reasons why might have occurred. It will also consider the reasons that wear debris arising from the
This study reports the mid-term results of a large bearing hybrid metal on metal total hip replacement (MOMHTHR) in 199 hips (185 patients) with mean follow up of 62 months. Clinical, radiological outcome, metal ion levels and retrieval analysis were performed. Seventeen patients (8.6%) had undergone revision, and a further fourteen are awaiting surgery (defined in combination as failures). Twenty one (68%) failures were females. All revisions and ten (71%) of those awaiting revision were symptomatic. Twenty four failures (86%) showed progressive radiological changes. Fourteen revision cases showed evidence of adverse reactions to metal debris (ARMD). The failure cohort had significantly higher whole blood cobalt ion levels (p=0.001), but no significant difference in cup size (p=0.77), inclination (p=0.38) or cup version (p=0.12) in comparison to the non revised cohort. Female gender was associated with an increased risk of failure (chi squared p=0.04). Multifactorial analysis demonstrated isolated raised Co levels in the absence of either symptoms or XR changes was not predictive of failure (p=0.675). However both the presence of pain (p<0.001) and XR changes (p<0.001) in isolation were both significant predictors of failure. Wear analysis (n=5) demonstrated increased wear at the
The biological significance of cobalt-chromium wear particles from metal-on-metal hip replacements may be different to the effects of the constituent metal ions in solution. Bacteria may be able to discriminate between particulate and ionic forms of these metals because of a transmembrane nickel/cobalt-permease. It is not known whether wear particles are bacteriocidal. We compared the doubling time of coagulase negative staphylococcus, Doubling time halved in metal-on-metal (p = 0.003) and metal-on-polyethylene (p = 0.131) particulate debris compared with the control. Bacterial nickel/cobalt-transporters allow metal ions but not wear particles to cross bacterial membranes. This may be useful for testing the biological characteristics of different wear debris. This experiment also shows that metal-on-metal hip wear debris is not bacteriocidal.