Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To

Obesity is an increasing public health concern associated with increased perioperative complications and expense in lumbar spine fusions. While open and mini-open fusions such as transforaminal lumbar interbody fusion (TLIF) and minimally invasive TLIF (MIS-TLIF) are more challenging in obese patients, new MIS procedures like oblique lateral lumbar interbody fusion (OLLIF) may improve perioperative outcomes in obese patients relative to TLIF and MIS-TLIF. The purpose of this study is to determine the effects of obesity on perioperative outcomes in OLLIF, MIS-TLIF, and TLIF. This is a retrospective cohort study. We included patients who underwent OLLIF, MIS-TLIF, or TLIF on three or fewer spinal levels at a single Minnesota hospital after conservative therapy had failed. Indications included in this study were degenerative disc disease, spondylolisthesis, spondylosis, herniation, stenosis, and scoliosis. We measured demographic information, body mass index (BMI), surgery time, blood loss, and hospital stay. We performed summary statistics to compare perioperative outcomes in MIS-TLIF, OLLIF, and TLIF. We performed multivariate regression to determine the effects of BMI on perioperative outcomes controlling for demographics and number of levels on which surgeries were operated. OLLIF significantly reduces surgery time, blood loss, and hospital stay compared to MIS-TLIF, and TLIF for all levels. MIS-TLIF and TLIF do not differ significantly except for a slight reduction in hospital stay for two-level procedures. On multivariate analysis, a one-point increase in BMI increased surgery time by 0.56 ± 0.47 minutes (p = 0.24) in the OLLIF group, by 2.8 ± 1.43 minutes (p = 0.06) in the MIS-TLIF group, and by 1.7 ± 0.43 minutes (p < 0.001) in the TLIF group. BMI has positive effects on blood loss for TLIF (p < 0.001) but not for OLLIF (p = 0.68) or MIS-TLIF (p = 0.67). BMI does not have significant effects on length of hospital stay for any procedure. Obesity is associated with increased surgery time and blood loss in TLIF and with increased surgery time in MIS-TLIF. Increased surgery time may be associated with increased perioperative complications and cost. In OLLIF, BMI does not affect perioperative outcomes. Therefore, OLLIF may reduce the disparity in outcomes and cost between obese and non-obese patients


Study design. Prospective randomized study. Objective. Primary aim of this study was to compare clinical and radiological results of transforaminal lumbar interbody fusion (TLIF) with posterolateral (interlaminar) instrumented lumbar fusion (PLF) in adult low grade (Meyerding 1 & 2) spondylolisthesis patients. Background data. Theoretically, TLIF has better radiological result than PLF in spondylolisthesis in most of the studies. Method. 24 patients of low grade adult spondylolisthesis were randomly allocated to one of the two groups: group 1- PLF and group 2-TLIF. Study period was between August 2010 to March 2013. All patients were operated by a single surgeon (CN). Posterior decompression was performed in all patients. Average follow up period was 18.4 months. Quality of life was accessed with Visual analogue scale and Oswestry Low Back Pain Disability Index. Fusion was assessed radiologically by CT scan and X-ray. Result. Though fusion was significantly better in TLIF group, clinical outcome including relief of back pain and neurogenic claudication were better in PLF group. Rate of complication was also lower in PLF group. Conclusion. Considering the low complication rate and similar or better clinical results, posterolateral instrumented lumbar fusion is the better option in low grade adult spondylolisthesis


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 125 - 125
1 Mar 2017
Zhou C Sethi K Willing R
Full Access

Transforaminal lumbar interbody fusion (TLIF) using an implanted cage is the gold standard surgical treatment for disc diseases such as disc collapse and spinal cord compression, when more conservative medical therapy fails. Titanium (Ti) alloys are widely used implant materials due to their superior biocompatibility and corrosion resistance. A new Ti-6Al-4V TLIF cage concept featuring an I-beam cross-section was recently proposed, with the intent to allow bone graft to be introduced secondary to cage implantation. In designing this cage, we desire a clear pathway for bone graft to be injected into the implant, and perfused into the surrounding intervertebral space as much as possible. Therefore, we have employed shape optimization to maximize this pathway, subject to maintaining stresses below the thresholds for fatigue or yielding. The TLIF I-beam cage (Fig. 1(a)) with an irregular shape was parametrically designed considering a lumbar lordotic angle of 10°, and an insertion angle of 45° through the left or right Kambin's triangles with respect to the sagittal plane. The overall cage dimensions of 30 mm in length, 11 mm in width and 13 mm in height were chosen based on the dimensions of other commercially available cages. The lengths (la, lp) and widths (wa, wp) of the anterior and posterior beams determine the sizes of the cage's middle and posterior windows for bone graft injection and perfusion, so they were considered as the design variables for shape optimization. Five dynamic tests (extension/flexion bending, lateral bending, torsion, compression and shear compression, as shown in Fig. 2(b)) for assessing long term cage durability (10. 7. cycles), as described in ASTM F2077, were simulated in ANSYS 15.0. The multiaxial stress state in the cage was converted to an equivalent uniaxial stress state using the Manson-Mcknight approach, in order to test the cage based on uniaxial fatigue testing data of Ti-6Al-4V. A fatigue factor (K) and a critical stress (σcr) was introduced by slightly modifying Goodman's equation and von Mises yield criterion, such that a cage design within the safety design region on a Haigh diagram (Fig. 2) must satisfy K ≤ 1 and σcr ≤ SY = 875 MPa (Ti-6Al-4V yield strength) simultaneously. After shape optimization, a final design with la = 2.30 mm, lp = 4.33 mm, wa = 1.20 mm, wp = 2.50 mm, was converged upon, which maximized the sizes of the cage's windows, as well as satisfying the fatigue and yield strength requirements. In terms of the strength of the optimal cage design, the fatigue factor (K) under dynamic torsion approaches 1 and the critical stress (σcr) under dynamic lateral bending approaches the yield strength (SY = 875 MPa), indicating that these two loading scenarios are the most dangerous (Table 1). Future work should further validate whether or not the resulting cage design has reached the true global optimum in the feasible design space. Experimental validation of the candidate TLIF I-beam cage design will be a future focus. For any figures or tables, please contact authors directly (see Info & Metrics tab above).