Advertisement for orthosearch.org.uk
Results 1 - 20 of 24
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 632 - 638
1 Jun 2024
Hart CM Kelley BV Mamouei Z Turkmani A Ralston M Arnold M Bernthal NM Sassoon AA

Aims

Delayed postoperative inoculation of orthopaedic implants with persistent wound drainage or bacterial seeding of a haematoma can result in periprosthetic joint infection (PJI). The aim of this in vivo study was to compare the efficacy of vancomycin powder with vancomycin-eluting calcium sulphate beads in preventing PJI due to delayed inoculation.

Methods

A mouse model of PJI of the knee was used. Mice were randomized into groups with intervention at the time of surgery (postoperative day (POD) 0): a sterile control (SC; n = 6); infected control (IC; n = 15); systemic vancomycin (SV; n = 9); vancomycin powder (VP; n = 21); and vancomycin bead (VB; n = 19) groups. Delayed inoculation was introduced during an arthrotomy on POD 7 with 1 × 105 colony-forming units (CFUs) of a bioluminescent strain of Staphylococcus aureus. The bacterial burden was monitored using bioluminescence in vivo. All mice were killed on POD 21. Implants and soft-tissue were harvested and sonicated for analysis of the CFUs.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 31 - 31
1 Oct 2022
v. Dijk B v. Duyvenbode FH de Vor L Nurmohamed FRHA Lam M Poot A Ramakers R Koustoulidou S Beekman F v. Strijp J Rooijakkers S Dadachova E Vogely HC Weinans H van der Wal BC
Full Access

Aim. Implant infections caused by Staphylococcus aureus are difficult to treat due to biofilm formation, which complicates surgical and antibiotic treatment. Herewith we introduce an alternative approach using monoclonal antibodies (mAbs) targeting S. aureus and provide the biodistribution and specificity in a mouse implant infection model. Methods. 4497-IgG1targeting S. aureus Wall Teichoic Acid was labeled to Indium-111 using “CHXA” as a chelator. SPECT-CT scans were performed at 24, 72 and 120 hours after administration in Balb/cAnNCrl mice with a subcutaneous implant pre-colonized with biofilm of S. aureus. Biodistribution over the various organs of this labelled antibody was visualized and quantified using SPECT-CT imaging and compared to uptake at the target tissue with implant infection. Results. Uptake of the . 111. In-4497 mAbs (half-life 59 hours) at the infected implant gradually increased from 8.34%ID/g at 24 hours to 9.22%ID/g at 120 hours. Uptake at the heart/blood pool decreased over time from 11.60 to 7.58%ID/g whereas the uptake in other organs decreased from 7.26 to less than 4.66%ID/g at 120 hours. Conclusion. 111. In-4497 mAbs was found to specifically detect S. aureus and its biofilm with excellent and prolonged accumulation at the colonized implant site. Therefore, it holds great promise as a drug delivery system for diagnostic and bactericidal treatment of biofilm. However, high activity in the blood pool must be considered as it could pose a risk to healthy tissue


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 79 - 79
24 Nov 2023
Puetzler J Vallejo A Gosheger G Schulze M Arens D Zeiter S Siverino C Moriarty F
Full Access

Aim. The time to onset of symptoms after fracture fixation is still commonly used to classify fracture-related infections (FRI). Early infections (<2 weeks) can often be treated with debridement, systemic antibiotics, irrigation, and implant preservation (DAIR). Late infections (>10 weeks) typically require implant removal as mature, antibiotic-tolerant biofilms have formed. However, the recommendations for delayed infections (2–10 weeks) are not clearly defined. Here, infection healing and bone healing in early and delayed FRI is investigated in a rabbit model with a standardized DAIR procedure. Method. Staphylococcus aureus was inoculated into 17 rabbits after plate osteosynthesis in a humerus osteotomy. The infection developed either one week (early group, n=6) or four weeks (delayed group, n=6) before a standardized DAIR procedure and microbiological analysis were performed. Systemic antibiotics were administered for six weeks (two weeks: Nafcillin+Rifampin, four weeks: Levofloxacin+Rifampin). A control group (n=5) also underwent a revision operation (debridement and irrigation) after four weeks, but received no antibiotic treatment. Rabbits were euthanized seven weeks after the revision operation. Bone healing was assessed using a modified radiographic union score for tibial fractures (mRUST). After euthanasia, a quantitative microbiological examination of the entire humerus, adjacent soft tissues, and implants was performed. Results. All animals were infected at the time of revision surgery, with the bacterial load in the early group (especially in soft tissues) being greater than in the delayed group and control group. This indicates infiltration of bacteria into areas that are more difficult to reach after four weeks of debridement. The infection was eradicated in all animals in both the early and delayed groups at euthanasia, but not in the control group (CFU median (IQR): 2.1×10. 7. (1.3×10. 7. -2.6×10. 7. ). The osteotomy healed in the early group, while bone healing was significantly impaired in both the delayed group and control group (mRUST median (IQR): early group: 16 (14–16), delayed group: 7.5 (6–10), control: 7 (5.5–9); early vs. delayed: p=0.0411, early vs. control p=0.0065). Conclusion. The maturation of the infection between the first and fourth week does not affect the success of infection eradication in this rabbit FRI model. However, bone healing appears to be impaired with increasing duration of infection


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 54 - 54
1 Oct 2022
Mitterer JA Frank BJ Gardete-Hartmann S Panzenboek LF Simon S Krepler P Hofstaetter JG
Full Access

Aim. In severe cases of postoperative spinal implant infections (PSII) multiple revision surgeries may be needed. Little is known if changes of the microbiological spectrum and antibiotic resistance pattern occur between revision surgeries. Therefore, the aim of this study was to analyze the microbiological spectrum and antibiotic resistance pattern in patients with multiple revision surgeries for the treatment of PSII. Furthermore, changes of the microbiological spectrum, distribution of mono vs. polymicrobial infections, and changes of the antimicrobial resistance profile in persistent microorganisms were evaluated. Method. A retrospective analysis of a prospectively maintained single center spine infection database was performed with a minimum follow-up of 3 years. Between 01/2011 and 12/2018, 103 patients underwent 248 revision surgeries for the treatment of PSII. Overall, 20 patients (6 male/14 female) underwent 82 revisions for PSII (median 3; range 2–12). There were 55/82 (67.1%) procedures with a positive microbiological result. Microbiological analysis was performed on tissue and implant sonication fluid. Changes in microbial spectrum and antibiotic resistance pattern between surgeries were evaluated using Chi-Square and Fisher's exact test. Results. In total, 74 microorganisms (83.3% gram-positive; 10.8% gram-negative) were identified. The most common microorganisms were Staphylococcus epidermidis (18.9%) and Cutibacterium acnes (18.9%). All S. epidermidis identified were methicillin-resistant (MRSE). Overall, there were 15/55 (27.3%) polymicrobial infections. The microbiological spectrum changed in 57.1% (20/35) between the revision stages over the entire PSII period. In 42.9% (15/35) the microorganism persisted between the revision surgeries stages. Overall, changes of the antibiotic resistance pattern were seen in 17.4% (8/46) of the detected microorganisms comparing index revision and all subsequent re-revisions. Moreover, higher resistance rates were found for moxifloxacin and for ciprofloxacin at first re-revision surgery compared with index PSII revision. Resistances against vancomycin increased from 4.5% (1/23) at index PSII revision to 7.7% (2/26) at first re-revision surgery. Conclusions. Changes of the microbiological spectrum and the resistance pattern can occur in patients with severe PSII who require multiple revision surgeries. It is important to consider these findings in the antimicrobial treatment of PSII. The microbiological analysis of intraoperative tissue samples should be performed at every revision procedure for PSI


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 85 - 85
1 Oct 2022
Mannala G Rupp M Alt V
Full Access

Aim. Fungal periprosthetic joint infections are difficult to treat and often associated with a limited outcome for patients. Candida species account for approximately 90% of all fungal infections. In vivo biofilm models play major role to study biofilm development, morphology, and regulatory molecules for bacteria. However, in vivo modeling of biofilm-associated fungi models are very rare. Furthermore, due to ethical restrictions, mammalian models are replaced with other alternative models in basic research. Recently, we have developed insect infection model G. mellonella larvae to study implant associated biofilm infections with bacteria. This model organism was not used for fungi biofilm infection yet. Thus, we aimed to establish G. mellonella as in vivo model to study fungal implant infections using Candida albicans as model organism and to test anti-fungal medication. Method. Titanium and Stainless steel K-wires were cut into small pieces with size of 4mm. For the infection process, implants were pre-incubated in specified fungal growth culture Candida albicans at 1×10. 7. CFU/ml for 30 min at 150 rpm shaking conditions. Later, these implants were washed with 10ml PBS and implanted in the larvae as mentioned. To analyze the susceptibility of the implant-associated fungal infections towards anti fungal compounds, the larvae were treated with amphotericin B, fluconazole and voriconazole after 24h of implantation. The effect of anti-fungal compounds was measured in terms of survival observation for 5 days and fungal load in larvae on 2. nd. day. To reveal the fungal biofilm formation on implant, the implants were removed on day 3 and processed for SEM analysis. Results. Pre-incubated K-wire caused the Candida infection and observed the death of the larvae. The treatment with antifungal compounds recovered the larvae from the implant-infection, except in case of Voriconazole. However, the recovery with treatment of anti fungal compounds was not effective as the larvae with planktonic infection, which highlights typical biofilm phenotype. Further, the treatment with anti-fungal compounds with Amphotericin B and Fluconazole reduced the fungal load in larvae tissue. The SEM analysis revealed the formation fungal biofilm with hyphae and spores associated with larvae tissue on implant surface. Conclusions. The results from survival analysis, antifungal treatment and SEM analysis are very promising to use of G. mellonella as in vivo model to study fungal infections on implanted materials. Our study highlights the use of G. mellonella larvae as alternative in vivo model to study implant-associated fungal infections that reduces the use of the higher mammals


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 15 - 15
1 Jun 2023
Oomatia A Lu W Al Muderis M
Full Access

Introduction. Osseointegration has emerged as a promising alternative to rehabilitating with a traditional socket mounted prosthesis. Advantages have been reported to include improved functional mobility, better osseoperception, improved comfort, reduced pain, better biomechanical alignment and better gait, which all lead to a less restricted lifestyle and significantly improved quality of life. A major concern of the Osseointegrated approach lies in the risk of infections occurring from the permanent transcutaneous opening often referred to as the stoma. Several systematic reviews have indicated that the occurrence of minor infections can be quite common, serious complications are reported to be rare. In addition to commonly anticipated complications including fractures, surgical debridements or revisions, we have identified several significant events in which a patient may require to be readmitted and go through additional surgery. The objective of this study is to examine the rate of occurrence and reports on the best management practices of serious complications across a multi-centre review of more than 1000 osseointegration surgeries. Materials & Methods. A detailed analysis has been performed on all osseointegration surgeries performed by the Osseointegration Group of Australia and it's affiliates between since 2010. The majority of surgeries took place in Australia, the United States, the Middle East as well as in Europe. All events leading to a re-admission and subsequent re-operation have been identified through hospital operation records and pooled together for meta-analysis. Events identified include: revision of implants, periprosthetic fracture fixation, surgical debridement due to infections, neurectomies and soft- tissue refashioning. Results. Over 800 surgeries have been identified with a minimum 12-month follow-up time and included in this study. These included tibial, femoral and humeral, radial-ulnar and transpelvic osseointegration cases. The majority of these were performed using a single stage protocol. While general complications such as infection and soft tissue refashioning are common, serious events such as revision and fracture are rare. Interestingly, the rate of debridements and soft-tissue refashions were found to be higher among patients who were operated using a two-stage surgery. Among all cases, there were a total of 399 re-operation events recorded which occurred among 163 patients, indicating a high recurrence rate among the same patients. We recorded a total of 112 washouts, 93 neurectomies, 117 soft tissue refashions, 53 implant revisions and 24 periprosthetic fracture fixations. Conclusions. Many events leading to readmission after the primary surgery may not necessarily be graded as a complication of the osseointegration technique. This study has identified several addition possible reasons in which an osseointegration patient may need to be re-admitted into hospital for additional surgery. It was identified that through the implementation of improved surgical techniques and rehabilitation protocols, the rate of several of these re-operation events can be largely reduced, thus improving the overall outcomes of patients undergoing osseointegration surgery


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_5 | Pages 9 - 9
1 Apr 2022
Lu W Oomatia A Muderis MA
Full Access

Introduction. Advantages of osseointegration have been reported to include improved functional mobility, better osseoperception, improved comfort, reduced pain, better biomechanical alignment and gait, which all lead to a less restricted lifestyle and significantly improved quality of life. A major concern of the Osseointegrated approach lies in the risk of infections occurring from the permanent transcutaneous opening often referred to as the stoma. Materials and Methods. Detailed analysis has been performed on all osseointegration surgeries performed by the Osseointegration Group of Australia and it's affiliates since 2010. All events leading to a re-admission and subsequent re-operation have been identified through hospital operation records and pooled together for meta-analysis. Events identified include: revision of implants, periprosthetic fracture fixation, surgical debridement due to infections, neurectomies and soft- tissue refashioning. Results. Majority of these cases were performed following the single-stage protocol. Among all cases, there were a total of 399 re-operation events recorded which occurred among 163 patients, indicating a high recurrence rate among the same patients. We recorded a total of 112 washouts, 93 neurectomies, 117 soft tissue refashions, 53 implant revisions and 24 periprosthetic fracture fixations. Conclusions. In this study, we have identified several addition possible reasons in which an osseointegration patient may need to be re-admitted into hospital for additional surgery. It was identified that through the implementation of improved surgical techniques and rehabilitation protocols, the rate of several of these re-operation events can be largely reduced, thus improving the overall outcomes of patients undergoing osseointegration surgery


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 48 - 48
1 Feb 2020
Gustke K Durgin C
Full Access

Background. Intraoperative balancing of total knee arthroplasty (TKA) can be accomplished by either more prevalent but less predictable soft tissue releases, implant realignment through adjustments of bone resection or a combination of both. Robotic TKA allows for quantifiable precision performing bone resections for implant realignment within acceptable final component and limb alignments. Objective. To provide a direct comparison of patient reported outcomes between implant realignment and traditional ligamentous release for soft tissue balancing in TKA. Methods. IRB approved retrospective single surgeon cohort study of prospectively collected operative and clinical data of consecutive patients that underwent TKA with a single radius design utilizing kinematic sensors to assess final balance with or without robotic assistance allowing for a minimum of 12 months clinical follow up. Operative reports were reviewed to characterize the balancing strategy. In surgical cases using robotic assistance, pre-operative plan changes that altered implant placement were included in the implant realignment group. Any patient that underwent both implant realignment and soft tissue releases was analyzed separately. Kinematic sensor data was utilized to quantify ultimate balance to assure that each cohort had equivalent balance. Patient reported outcome data consisting of Knee Society- Knee Scores (KS-KS), Knee Society- Function Scores (KS-FS), and Forgotten Joint Scores (FJS) were prospectively collected during clinical follow up. Results. 182 TKA were included in the study. 3-Month clinical follow up was available for 174/182 knees (91%), 1-Year clinical follow up was available for 167/182 knees (92%) and kinematic sensor data was available for 169/182 knees (93%). Kinetic sensor data showed that on average all of the balancing subgroups achieved clinically equivalent balance. Use of robotic-arm assistance provided the tools and confidence to decrease from ligament release only in 40.8% of non-robotic cases to 3.8% in the robotic group, and the use of component realignment alone increased from 23.7% in the non-robotic cases to 48.1% in the robotic TKA group. KS-KS, KS-FS and FJS scores showed improvements in outcomes at both the 3-month and 1-year time points in the implant realignment cohort compared to the ligamentous release cohort. KS-KS, KS-FS, and FJS at 1-year were 1.6, 7.6, and 17.2 points higher respectively. While none of the comparisons reached statistical significance, KS-FS at 1 year showed a statistically and clinically significant difference (MCID 6.1–6.4) increase of 7.7 points in the implant realignment cohort compared to the ligamentous cohort. The 1-year trend can be further explained by the outperformance (MCID increase of 6.4 points) of the implant realignment robotic cohort at 1-year compared to the non-robotic ligamentous cohort. Conclusions. Directly comparing TKA patients balanced with implant realignment alone versus ligamentous release alone versus combined technique, a trend toward clinical improvement above a minimally clinical significant difference in KS-FS scores benefiting the implant realignment technique was seen at both 3-months and 1-year post-operatively. We hypothesize that the benefit of implant realignment is achieved through decreased soft tissue trauma as well as potentially greater predictability and sustainability of soft tissue balance than with soft tissue releases alone


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 21 - 21
1 Apr 2019
Gustke K Durgin C
Full Access

Background. Intraoperative balancing can be accomplished by either more prevalent but less predictable soft tissue releases, implant realignment through adjustments of bone resection or a combination of both. There is no published study directly comparing these methods. Objective. To provide a direct comparison between implant realignment and traditional ligamentous release for soft tissue balancing in total knee arthroplasty using both objective kinematic sensor data to document final balance and patient reported outcomes. Methods. IRB Approved retrospective cohort study of prospectively collected data comparing kinematic sensor data and patient reported outcomes for all consecutive patients that underwent TKA utilizing kinematic sensors with or without robotic assistance performed between August 2012 to April 2017 to allow for a minimum of 12 months clinical follow up. Results. 107 knees met inclusion criteria. Component realignment was utilized more frequently in the robotic surgical technique cohort than the non-robotic, non-navigated cohort due to the increased precision in implant realignment possble. Although KSS and FJS scores showed equivalent outcomes at both the 3-month and 1-year time points, KSS-Function scores at 1-year showed a statistically and clinically significant increase of 11.89 points in the implant realignment cohort compared to the ligamentous release cohort. Conclusions. A statistically and clinically significant improvement in KSS-Function scores benefiting the implant realignment technique was seen at 1-year post-operatively. This may suggest a benefit to using implant realignment as the ideal balancing strategy in total knee arthroplasty. Further longitudinal studies with increased number of cases should increase statistical power which is needed to further confirm the suggested benefits of the implant realignment balancing technique


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 63 - 63
1 Dec 2017
Pützler J Arens D Metsemakers W Zeiter S Richard K Richards G Raschke M Moriarty F
Full Access

Aim. Open fractures still have a high risk for fracture-related Infection (FRI). The optimal duration of perioperative antibiotic prophylaxis (PAP) for open fractures remains controversial due to heterogeneous guidelines and highly variable prophylactic regimens in clinical practice. In order to provide further evidence with which to support the selection of antibiotic duration for open fracture care, we performed a preclinical evaluation in a contaminated rabbit fracture model. Method. A complete humeral osteotomy in 18 rabbits was fixed with a 7-hole-LCP and inoculated with Staphylococcus aureus (2×106 colony forming units, CFU per inoculum). This inoculum was previously shown to result in a 100% infection rate in the absence of any antibiotic prophylaxis. Cefuroxime was administered intravenously in a weight adjusted dosage equivalent to human medicine (18.75 mg/kg) as a single shot only, for 24 hours (every 8 hours) and for 72 hours (every 8 hours) in separate groups of rabbits (n=6 per group). Infection rate per group was assessed after two weeks by quantitative bacteriological evaluation of soft tissue, bone and implants. Blood samples were taken from rabbits preoperatively and on days 3, 7 and 14 after surgery to measure white blood cell count (WBC) and C-reactive protein (CRP) levels. Results. Duration of PAP had a significant impact on the success of antibiotic prophylaxis. The single shot regimen completely failed to prevent infection. All samples (soft tissue, implant and bone) from this group displayed high numbers of bacteria. Additionally, abscesses were present in two of six rabbits. The 24-hour regimen showed a reduced infection rate (1 out of 6 rabbits infected), but only the 72-hour course was able to prevent FRI in all animals in our model. After an initial postoperative peak on day three, CRP levels then decreased to baseline (approx. 30 µg/ml) in the 24h-group and 72h-group, but remained significantly higher in the single shot group at day 7 and 14 (p<0.05). Conclusions. When contamination with high bacterial loads is likely (e.g. in an open fracture situation), a 72-hour course of intravenous cefuroxime appears to be superior in preventing FRI compared to a single shot or 24-hour antibiotic regimen. Acknowledgements. This work was funded by AOTrauma


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 72 - 72
1 Feb 2020
Hall D Garrigues G Blanchard K Shewman E Nicholson G Pourzal R
Full Access

Introduction. The combined incidence of anatomic (aTSA) and reverse total shoulder arthroplasties (rTSA) in the US is 90,000 per annum and rising. There has been little attention given to potential long-term complications due to periprosthetic tissue reactions to implant debris. The shoulder has been felt to be relatively immune to these complications due to lower acting loads compared to other joint arthroplasties. In this study, retrieved aTSAs and rTSAs were examined to determine the extent of implant damage and to characterize the nature of the corresponding periprosthetic tissue responses. Methods. TSA components and periprosthetic tissues were retrieved from 23 (eleven aTSA, twelve rTSA). Damage to the implants was characterized using light microscopy. Head/stem taper junction damage was graded 1–4 as minimal, mild, moderate or marked. Damage on polyethylene (PE) and metal bearing surfaces was graded 1–3 (mild, moderate, marked). H&E stained sections of periprosthetic soft tissues were evaluated for the extent and type of cellular response. A semi-quantitative system was used to score (1=rare to 4=marked) the overall number of particle-laden macrophages, foreign body giant cells, lymphocytes, plasma cells, eosinophils, and neutrophils. Implant damage and histopathological patterns were compared between the two TSA groups using the Mann-Whitney and Spearman tests. Results. The PE bearing surfaces of aTSAs were dominated by three-body wear and plastic deformation, whereas the rTSA PE components exhibited mainly polishing and scratching. Metal surface damage occurred in a few cases of both groups. Only one aTSA case exhibited marked taper corrosion. In both groups the primary nature of the inflammatory response was a moderate to marked macrophage response to wear particles (78% of cases). The particle-laden macrophages tended to occur in broad sheets and contained metal, PE, bone cement and suture debris. The extent of macrophage and foreign body giant cell responses was greater in the aTSA group (p≤0.001). Metal particles were seen in 63% of aTSAs and 83% of rTSAs. In the aTSA group, bone cement was seen in all cases and suture was observed in 9 cases, and their presence was larger compared to the rTSA group (p≤0.022). There was no difference in the number of other cell types between the groups. A mild lymphocyte response and chromium-phosphate debris was present within the tissue of the aTSA case with marked corrosion, which may be indicative of an early stage adverse local tissue reaction (ALTR) analog to total hip replacements with taper corrosion. Conclusion. Both groups exhibited a strong macrophage response to a combination of different types of implant debris—PE, metal, bone cement and suture. The prevalence of a marked macrophage response was larger in the aTSA group which may be explained by the larger overall presence of cement and suture within this group. PE particles may differ in size between groups due to different acting wear mechanisms which may also affect the extent of the macrophage response. Although corrosion within modular junctions was overall rare, the presence of one case with marked corrosion shows that taper corrosion and subsequent ALTRs are possible in TSAs. For any figures or tables, please contact authors directly


The Bone & Joint Journal
Vol. 103-B, Issue 6 | Pages 1168 - 1172
1 Jun 2021
Iliadis AD Wright J Stoddart MT Goodier WD Calder P

Aims

The STRYDE nail is an evolution of the PRECICE Intramedullary Limb Lengthening System, with unique features regarding its composition. It is designed for load bearing throughout treatment in order to improve patient experience and outcomes and allow for simultaneous bilateral lower limb lengthening. The literature published to date is limited regarding outcomes and potential problems. We report on our early experience and raise awareness for the potential of adverse effects from this device.

Methods

This is a retrospective review of prospective data collected on all patients treated in our institution using this implant. We report the demographics, nail accuracy, reliability, consolidation index, and cases where concerning clinical and radiological findings were encountered. There were 14 STRYDE nails implanted in nine patients (three male and six female) between June 2019 and September 2020. Mean age at surgery was 33 years (14 to 65). Five patients underwent bilateral lengthening (two femoral and three tibial) and four patients unilateral femoral lengthening for multiple aetiologies.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 33 - 33
1 Dec 2016
Trentinaglia MT Drago L Logoluso N Morelli I Romanò C
Full Access

Aim. Implant-related infections, including peri-prosthetic joint infection (PJI) and infected osteosynthesis, are biofilm-related. Intra-operative diagnosis and pathogen identification is currently considered the diagnostic benchmark; however the presence of bacterial biofilm(s) may have a detrimental effect on pathogen detection with traditional microbiological techniques. Sonication and chemical biofilm debonding have been proposed to overcome, at least partially, this issue, however little is known about their possible economical impact. Aim of this study was to examine direct and indirect hospital costs connected with the routine use of anti-biofilm microbiological techniques applied to hip and knee PJIs. Method. In a first part of the study, the “Turn Around Time (TAT)” and direct costs comparison between a system to find bacteria on removed prosthetic implants. *. , a closed system for intra-operative tissue and implant sampling, transport and anti-biofilm processing, versus sonication has been performed. An additional analysis of the estimated indirect hospital costs, resulting from the diagnostic accuracy of traditional and anti-biofilm microbiological processing has been conducted. Results. Considering an average 5 samples per patient, processed separately with the sonication or pooled together, using the device. *. , the direct costs comparison shows a similar overall average estimated cost per patient when using sonication (€ 400.00) or the system to find bacteria on removed prosthetic implants. *. (€ 391.70). Indirect hospital costs of false positive or negative intra-operative pathogen identification can be estimated as, respectively, € 65,000 and € 90,000, including possible inadequate treatments and/or surgeries and/or need for further hospital stay, risk of infection recurrence/persistence, possible medico-legal claims, etc. Considering 1 out of ten cases of false identification as generating indirect hospital costs (“mitigation factor”: 90%) and an accuracy of current intra-operative microbiological sampling and testing of approximately 80%, it is calculated that any anti-biofilm procedure able to increase the microbiological diagnostic accuracy by 10%, at an average cost per patient of € 500.00, would induce an average hospital cost saving of approximately € 100,000 per 100 treated cases. Conclusions. To our knowledge, this is the first study specifically focused on the potential economical impact of the routine clinical use of microbiological anti-biofilm processing techniques in orthopaedics. The several limitations of this study notwithstanding, including the variable Country-based value of the different direct costs and the assumptions made concerning indirect costs calculations, this analysis points out how more accurate pathogen identification procedures can lead to an improvement of the management of implant-related infections in orthopaedics, with a substantial economical balance


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 128 - 128
1 Mar 2017
Royhman D Hallab N Jacobs J Mathew M
Full Access

Modern hip implants feature a modular design, whereby the individual components of the implant are assembled during the surgery. Increased reported failure rates associated with the utilization of modular junctions have raised many clinical concerns about the increased release of metal ions/debris leading to adverse local tissue reactions. Implant materials are subject to a myriad of mechanical motion and forces, and varying electrochemical conditions and pH changes from the surrounding environment. To date, no studies have attempted to model the collected data in order to predict the performance of the materials so that precautions can be taken before the problem reaches the critical stage. This study reports the effects of pH variation, displacement variation, and load variation on the mechanical and corrosion behavior of the hip implant modular junction system, tested with a custom-built fretting-corrosion apparatus. The main objective of this study is to combine the complete data set of the in-vitro experiments to create fretting-corrosion wear maps that can predict the dangerous domains of the hip implant modular system. For each test, the flat portions of two CoCrMo pins were loaded perpendicularly against a Ti6Al4V Rod (Ti alloy) in a Flat-on-flat configuration in a simulated synovial fluid in order to simulate the modular hip implant system. A schematic diagram of contact conditions is presented in Figure 1. A sinusoidal displacement was applied onto the rod, which articulated against the CoCrMo alloy pins, at a frequency of 1Hz. The experiential data from the fretting-corrosion tests has been used to create fretting-corrosion maps. The variables incorporated into the maps include: total mass loss, electrochemical destabilization, pH variation, load variation, displacement variation, and visual examination of the wear features of the contact zone. Total mass loss has been estimated via measurement of the simulator fluid by ICP-MS technique. Electrochemical destabilization was evaluated by a single parameter (V. Drop. ). The electrochemical destabilization of the tribosystem was evaluated by measuring the drop in potential, V. Drop. (V vs. SCE), resultant from the initiation of the fretting phase. The V. Drop. refers to the initial cathodic drop in potential in response to the initial onset of fretting motion. The data from the in vitro fretting-corrosion experiments has been combined to create four fretting-corrosion maps (Figures 2A–3D). Partial slip wear features and mechanical behavior was observed at 25µm displacement. 25–150µm displacement amplitudes showed gross slip behavior. Anything larger than 150µm displayed wear features that were indistinguishable from sliding wear. In general, total mass loss and V. Drop. increased with increasing displacement. Samples that were tested at pH 6.0 or higher showed signs of material transfer and higher V. Drop. Finally, there was a general decrease in V. Drop. with increased applied load and pH. In general, the wears maps were able to offer some predictive validity, however, there were some discrepancies between visual observations and the observed damage parameters. It is possible that other parameters could offer better correlation. Future studies will be conducted to measure other parameters. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 10 - 10
1 Apr 2019
Yoshioka T Okimoto N Kobayashi T Ikejiri Y Asano K Murata H Kawasaki M Majima T
Full Access

Soft tissue balance is important for good clinical outcome and good stability after TKA. Ligament balancer is one of the devices to measure the soft tissue balance. The objective of this study is to clarify the effect of the difference in the rotational position of the TKA balancer on medial and lateral soft tissue balance. Materials and Methods. This study included with 50 knees of the 43 patients (6 males, 37 females) who had undergone TKA with ADLER GENUS system from March 2015 to January 2017. The mean age was 71.1±8.1 years. All patients were diagnosed with medial osteoarthritis of the knee. All implants was cruciate substituted type (CS type) and mobile bearing insert. We developed a new ligament balancer that could be fixed to the tibia with keel and insert trial could be rotated on the paddle. We measured the medial and lateral soft tissue balance during TKA with the new balancer. The A-P position of the balancer was fixed on tibia in parallel with the Akagi line (A-P axis 0 group) and 20 degrees internal rotation (IR group) and 20 degrees external rotation (ER group). Soft tissue balance was measured in extension and 90 degrees of knee flexion on each rotational position. Results. The mean angle of valgus and varus in IR group, 0 group and ER group were 4.6±2.2 degrees varus, 1.9±1.6 degrees varus and 0.4±2.4 degrees varus respectively in extension, and 5.5±3.0 degrees varus, 2.1±2.2 degrees varus and 0.7±3.2 degrees varus respectively in 90 degrees of knee flexion. There were significant differences between three groups in extension (p<0.0001) and flexion (p<0.0001). In other words, when the balancer was fixed on tibia with internal rotation against the Akagi line, the soft tissue balance indicated medial tightness. Conversely, when the balancer was fixed on tibia with external rotation against the Akagi line, the soft tissue balance showed lateral tightness. The insert trial significantly rotated to opposite side against the position of balancer fixed. Discussion. Ligament balancer is used to be inserted between femur and tibia. If balancer is not fixed on tibia, it may rotated and translated during measurement. That movement made impossible to measure the correct soft tissue balance. We created a new balancer that could be fixed to the tibia with keel and the insert trial could be rotated on the paddle. Furthermore, it is possible to measure the soft tissue balance after installation of the femoral trial. As a result, it is possible to check the real soft tissue balance after implantation. In conclusion, direction of A-P axis of the ligament balancer is important to measure the correct soft tissue balance in TKA. This result means that the implantation on excessive rotation of the tibial component affects on the medial and lateral soft tissue balance in fixed type TKA. In mobile type TKA, it is possible to substitute if it is within the possible range of rotation by rotational mobile insert


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 102 - 102
1 Dec 2017
Pützler J Zeiter S Vallejo A Gehweiler D Raschke M Richards G Moriarty F
Full Access

Aim. Treatment regimens for fracture-related infection (FRI) often refer to the classification of Willenegger and Roth, which stratifies FRIs based on time of onset of symptoms. The classification includes early (<2 weeks), delayed (2–10 weeks) and late (>10 weeks) infections. Early infections are generally treated with debridement and systemic antibiotics but may not require implant removal. Delayed and late infections, in contrast, are believed to have a mature biofilm on the implant, and therefore, treatment often involves implant removal. This distinction between early and delayed infections has never been established in a controlled clinical or preclinical study. This study tested the hypothesis that early and delayed FRIs respond differently to treatment comprising implant retention. Method. A complete humeral osteotomy in 16 rabbits was fixed with a 7-hole-LCP and inoculated with Staphylococcus aureus. The inoculum size (2×106 colony forming units per inoculum) was previously tested without antibiotic intervention to result in infection of all animals persisting for at least 12 weeks.4 The infection was allowed to develop for either 1 (early group) or 4 (delayed group) weeks (n= 8 per group) after bacterial inoculation. At these time points, treatment involved debridement and irrigation of the wound (no implant removal) and quantitative bacteriological evaluation of the removed materials. Systemic antibiotics were administered according to a common clinical regimen (2 weeks: rifampin + nafcillin, followed by 4 weeks: rifampin + levofloxacin). After an additional one-week antibiotic washout period, animals were euthanized and a quantitative bacteriology of soft tissue, implant (after sonication) and bone was performed. Results. Greater numbers of bacteria were recovered by debridement and irrigation in the early group compared with the delayed group, which may indicate retraction of the infection in the delayed stage. Treatment was successful in both the early and delayed group: all animals in both groups were infection free at euthanasia. Furthermore, all osteotomies had healed, although animals in the delayed group displayed irregular callus formation. Conclusions. In both groups, treatment successfully eradicated the infection, suggesting that, at least in this model, the maturity of the infection does not impact upon treatment success within the first four weeks. Acknowledgements. This work was funded by AOTrauma


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 86 - 86
1 Mar 2017
Plaskos C Dabuzhsky L Gill P Jevsevar D Keggi J Koenig J Moschetti W Sydney S Todorov A Joly C
Full Access

We introduce a novel active tensioning system that can be used for dynamic gap-based implant planning as well as for assessment of final soft tissue balance during implant trialing. We report on the concept development and preliminary findings observed during early feasibility testing in cadavers with two prototype systems. System description. The active spacer (fig 1) consists of a motorized actuator unit with integrated force sensors, independently actuated medial and lateral upper arms, and a set of modular attachments for replicating the range of tibial baseplate and insert trial sizes. The spacer can be controlled in either force or position (gap) control and is integrated into the OMNIBotics. TM. Robotic-assisted TKA platform (OMNI, MA, USA). Cadaver Study. Two design iterations were evaluated on eleven cadaver specimens by seven orthopaedic surgeons in three separate cadaver labs. The active spacer was used in a tibial-first technique to apply loads and measure gaps prior to and after femoral resections. To determine the range of forces applied on the spacer during a varus/valgus assessment procedure, each surgeon performed a varus/valgus stress test and peak medial and lateral forces were measured. Surgeons also rated the feel of the stability of the knee at 50N and 80N of preload using the following scale: 1 – too loose; 2 – slightly loose; 3 – ideal; 4 slightly tight; 5 – too tight. Final balanced was assessed with the spacer and with manual trial components. Results. Overall the prototype system successfully met the functional requirements for applying controlled tension during ligament balancing, and user feedback on usability and feasibility for use in TKA was highly positive. Peak forces measured during blinded stability assessments were significantly imbalanced from medial to lateral and exhibited a wide range across users (range: 70N – 310N, table 1). Each surgeon rated 50N of tension as feeling “slightly loose” and 80N as feeling “ideal” in extension. “Ideal” soft tissue balance was achieved in the last three knees tested using the second design iteration, as rated by the surgeons with final trial components in place. Discussion. Our preliminary cadaver results have established the initial feasibility of the active spacer concept for applying tension during ligament balancing and implant planning. Our initial results also suggest that performing a varus/valgus assessment without force readings can lead to imbalanced mediolateral load application. This may be due to factors such as hand dominance and pulling in varus versus pushing in valgus. There was also considerable inter-surgeon variability in the peak forces applied. An advantage of computer-controlled ligament tensioning and force sensing is ability to standardize applied mediolateral forces across patients and surgeons. In the assessment of the ‘ideal' static ligament tension in extension a force of 80N was preferred over 50N, which is in the range of forces applied by others during ligament balancing. What is the ideal patient specific force to apply remains a topic of future research. Our next steps will be to further evaluate use of the system in the context of virtual trialing


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 254 - 254
1 Jun 2012
Velyvis J Coon T Roche M Kreuzer S Horowitz S Jamieson M Conditt M
Full Access

Introduction. Bicompartmental osteoarthritis involving the medial tibiofemoral and the patellofemoral compartments is often treated with total knee replacement. Improved implants and surgical techniques have led to renewed interest in bicompartmental arthroplasty. This study evaluates the radiographic and early clinical results of bicompartmental arthroplasty with separate unlinked components implanted with the assistance of a robotic surgical arm. In addition, we examine the amount of bone resected using unlinked bicompartmental components compared to total knee replacement. Finally, a retrospective review of total knee cases examines the applicability of this early intervention procedure. Methods. 97 patients received simultaneous but geometrically separate medial tibiofemoral and patellofemoral arthroplasties with implants specifically designed to take advantage of a new bone and tissue sparing implantation technique using haptic robotics. These patients came from four surgeons at four different hospitals. The average follow-up was 9 months. Pre- and post-operative radiographs were taken. ROM, KSS and WOMAC scores were recorded. The patients had an average age of 67 yrs (range: 45-95), BMI of 29 ± 4kg/m. 2. 47% of the patients were male. We retrospectively reviewed pre and post operative notes from 406 consecutive TKA patients from a single surgeon. Intraoperative data included the integrity of the three compartments and the ACL. Results. At only six weeks follow-up, patients recovered their pre-operative ROM (p=0.37). Knee Society Knee scores (knee and function) and WOMAC scores (pain, function and total) significantly improved from pre-operative values at every follow-up of 6 weeks, 6 months and 1 year (p<0.05). Radiographically, there was no evidence of loosening, wear or progression of OA. There were also no perioperative complications. Using computer simulation, the amount of bone removed using bicompartmental arthroplasty compared to traditional TKA was predicted. Total bone removed on the femur and the tibia using a standard TKA implant is 3.5 times the bone removed using a bicompartmental onlay implant and 4 times the bone removed when using a bicompartmental inlay implant. In the review of 406 TKA cases, the ACL was intact in 66% of these cases. Based on these data alone, 16% of these TKA patients were indicated for a unicondylar arthroplasty, 12% medial UKA, 3% lateral UKA and 1% PFA. In addition, 31% were indicated for bicompartmental arthroplasty with 4% bicondylar (medial and lateral UKA), 6% lateral UKA and PFA and 21% medial UKA and PFA. While these data don't yet account for fixed versus flexible deformities, excessive osteophytes or other contraindications, it seems clear that the disease often treated with a TKA does not actually involve all three compartments. Conclusions. Modular bicompartmental arthroplasty is an effective method for treating arthritis of the knee restricted to the medial and patellofemoral compartments. Early results using contemporary prostheses are encouraging and should prompt further mid- and long-term study. Robotic assistance of bicompartmental arthroplasty has shown good early clinical and radiographic success. In addition, bicompartmental arthroplasty removes significantly less bone than total knee arthroplasty. Also, data indicates that may total knee patients have healthy cruciates and disease in only two of the three compartments, indicating that TKA is an overtreatment of earlier stage osteoarthritis. Longer term studies will determine the clinical significance of preserving healthy cartilage and ligaments routinely resected with traditional tricompartmental TKA


INTRODUCTION. Use of a novel ligament gap balancing instrumentation system in total knee arthroplasty (TKA) resulted in femoral component external rotation values which were higher on average, compared to measured bone resection systems. In one hundred twenty knees in 110 patients the external rotation averaged 6.9 degrees (± 2.8) and ranged from 0.6 to 12.8 degrees. The external rotation values in this study were 4° and 2° larger, respectively, than the typical 3° and 5° discrete values that are common to measured resection systems. The purpose of the present study was to determine the effect of these greater external rotation values for the femoral component on patellar tracking, flexion stability and function of two different TKA implant designs. METHODS. In the first arm of the study, 120 knees in 110 patients were consecutively enrolled by a single surgeon using the same implant design (single radius femur with a medial constraint tibial liner) across subjects. All patients underwent arthroplasty with tibial resection first and that set external rotation of the femoral component based upon use of a ligament gap balancing system. Following ligament tensioning / balancing, the femur was prepared. The accuracy of the ligament balancing system was assessed by reapplying equal tension to the ligaments using a tensioning bolt and torque wrench in flexion and extension after the bone resections had been made. The resulting flexion and extension gaps were then measured to determine rectangular shape and equality of the gaps. Postoperative Merchant views were obtained on all of the patients and patellar tracking was assessed and compared to 120 consecutive total knee arthroplasties previously performed by the same surgeon with the same implant using a measured resection system. In the second arm of the study, 100 unilateral knees in 100 patients were consecutively enrolled. The same instrumentation and technique by the same surgeon was used, but with a different implant design (single radius femur without a medial constraint tibial liner). RESULTS. Rectangular flexion and extension gaps were obtained within ± 0.5mm in all cases. Equality of the flexion and extension gaps was also obtained within ± 0.5mm in all cases. Merchant views of the total knee arthroplasties showed central patellar tracking with no tilt or subluxation in 90% of the ligament gap balanced knees and 74% of the measured resection knees. Arthrofibrosis resulting in a closed manipulation under anesthesia was required in 6% of the knees with single radius femurs and medial constaint tibial liners, but only in 1% of the single radius femur knees without medial constraint liners. DISCUSSION AND CONCLUSION. External rotation values are higher on average, when ligament tensioning / balancing is employed with this novel system compared to measured resection systems. In this study this resulted in consistent matching of the flexion gap to the extension gap and better patellar tracking. These findings suggest that limiting the surgeon to discrete rotation values may be at odds with where the femur “desires” to be, given soft tissue considerations for each patient. Also, even with ideal soft tissue balancing, TKA implant design can have a significant affect on the outcome measure of development of arthrofibrosis


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 27 - 27
1 Oct 2014
Hunt N Ghosh K Blain A Athwal K Rushton S Longstaff L Amis A Deehan D
Full Access

Instability is reported to account for around 20% of early TKR revisions. The concept of restoring the “Envelope of Laxity” (EoL) mandates a balanced knee through a continuous arc of functional movement. We therefore hypothesised that a single radius (SR) design should confer this stability since it has been proposed that the SR promotes normal medial collateral ligament (MCL) function with isometric stability throughout the full arc of motion. Our aim was to characterise the EoL and stability offered by a SR cruciate retaining (CR)-TKR, which maintains a SR from 10–110° flexion. This was compared with that of the native knee throughout the arc of flexion in terms of anterior, varus/valgus and internal/ external laxity to assess whether a SR CR-TKR design can mimic normal knee joint kinematics and stability. Eight fresh frozen cadaveric lower limbs were physiologically loaded on a custom jig. The operating surgeon performed anterior drawer, varus/ valgus and internal/external rotation tests to determine ‘maximum’ displacements in 1) native knee and 2) single radius CR-TKR (Stryker Triathlon) at 0°, 30°, 60°, 90° and 110° flexion. Displacements were recorded using computer navigation. Significance was determined by linear modelling (p≤0.05). The key finding of this work was that the EoL offered by the SR CR-TKR was largely equivalent to that of the native knee from 0–110°. The EoL increased significantly with flexion angle for both native and replaced knees. Overall, after TKR anterior laxity was comparable with the native knee, whilst total varus-valgus and internal-external rotational laxities reduced by only 1°. However, separated varus and valgus laxities at 110° significantly increased after TKR as did anterior laxity at 30° flexion. In conclusion, the overall EoL offered by the SR CR-TKR is comparable to that of the native knee. In the absence of soft tissue deficiency, the implant appears to offer reliable and reproducible stability throughout the functional range of movement, with exception of anterior laxity at 30° and varus and valgus laxity when the knee approaches high flexion. These shortcomings should offer scope for future work