Purpose. The goal of Total Ankle Arthroplasty (TAA) is to relieve pain and restore healthy function of the intact ankle. Restoring intact ankle kinematics is an important step in restoring normal function to the joint. Previous robotic laxity testing and functional activity simulation showed the intact and implanted motion of the tibia relative to the calcaneus is similar. However there is limited data on the
Traditional screw fixation of the syndesmosis can be prone to malreduction. Suture button fixation however, has recently shown potential in securing the fibula back into the incisura even with intentional malreduction. Yet, if there is sufficient motion to aid reduction, the question arises of whether or not this construct is stable enough to maintain reduction under loaded conditions. To date, there have been no studies assessing the optimal biomechanical tension of these constructs. The purpose of this study was to assess optimal tensioning of suture button fixation and its ability to maintain reduction under loaded conditions using a novel stress CT model. Ten cadaveric lower limbs disarticulated at the knee were used. The limbs were placed in a modified external fixator frame that allows for the application of sustained torsional (5 Nm), axial (500 N) and combined torsional/axial (5Nm/500N) loads. Baseline CT scans of the intact ankle under unloaded and loaded conditions were obtaining. The syndesmosis and the deltoid ligament complex were then sectioned. The limbs were then randomised to receive a suture button construct tightened at 4 kg force (loose), 8 kg (standard), or 12 kg (maximal) of tension and CT scans under loaded and unloaded conditions were again obtained. Eight previously described measurements were taken from axial slices 10 mm above the
Purpose. Coronal plane malalignment at the level of the
Restoration of natural range and pattern of motion is the primary goal of joint replacement. In total ankle replacement, proper implant positioning is a major requirement to achieve good clinical results and to prevent instability, aseptic loosening, meniscal bearing premature wear and dislocation at the replaced ankle. The current operative techniques support limitedly the surgeon in achieving a best possible prosthetic component alignment and in assessing proper restoration of ligament natural tensioning, which could be well aided by computer-assisted surgical systems. Therefore the outcome of this replacement is, at present, mainly associated to surgeon's experience and visual inspection. In some of the current ankle prosthetic designs, tibial component positioning along the anterior/posterior (A/P) and medio/lateral axes is critical, particularly in those designs not with a flat articulation between the tibial and the meniscal or talar components. The general aim of this study was assessing in-vitro the effects of the A/P malpositioning of the tibial component on three-dimensional kinematics of the replaced joint and on tensioning of the calcaneofibular (CaFiL) and tibiocalcaneal (TiCaL) ligaments, during passive flexion. Particularly, the specific objective is to compare the intact ankle kinematics with that measured after prosthesis component implantation over a series of different positions of the tibial component. Four fresh-frozen specimens from amputation were analysed before and after implantation of an original convex-tibia fully-congruent three-component design of ankle replacement (Box Ankle, Finsbury Orthopaedics, UK). Each specimen included the intact tibia, fibula and ankle joint complex, completed with entire joint capsule, ligaments, muscular structures and skin. The subtalar joint was fixed with a pin protruding from the calcaneus for isolating
Surgeons need to be able to measure angles and distances in three dimensions in the planning and assessment of knee replacement. Computed tomography (CT) offers the accuracy needed but involves greater radiation exposure to patients than traditional long-leg standing radiographs, which give very little information outside the plane of the image. There is considerable variation in CT radiation doses between research centres, scanning protocols and individual scanners, and ethics committees are rightly demanding more consistency in this area. By refining the CT scanning protocol we have reduced the effective radiation dose received by the patient down to the equivalent of one long-leg standing radiograph. Because of this, it will be more acceptable to obtain the three-dimensional data set produced by CT scanning. Surgeons will be able to document the impact of implant position on outcome with greater precision.