Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 126 - 126
1 Feb 2017
Fukunaga M Morimoto K
Full Access

In some regions in Asia or Arab, there are lifestyles without chair or bed and sitting down on a floor directly, by flexing their knee deeply. However, there are little data about the joint angles, muscle forces or joint loads at such sitting postures or descending to and rising from the posture. In this study, we report the knee joint force and the muscle forces of lower limb at deep squatting and kneeling postures.

The model to estimate the forces were constructed as 2D on sagittal plane. Floor reacting force, gravity forces and thigh-calf contact force were considered as external forces. And as the muscle, rectus and vastus femoris, hamstrings, gluteus maximus, gastrocnemius and soleus were taken into the model. The rectus and vastus were connected to the tibia with patella and patella tendon. First the muscle forces were calculated by the moment equilibrium conditions around hip, knee and ankle joint, and then the knee joint force was calculated by the force equilibrium conditions at tibia and patella.

For measuring the acting point of the floor reacting force, thigh-calf contact force and joint angles during the objective posture, we performed the experiments. The postures to be subjected were heel-contact squatting (HCS), heel-rise squatting (HRS), kneeling and seiza (Japanese sedentary kneeling), as shown in the Fig.1. The test subjects were ten healthy male, and the average height was 1.71[m], weight was 66.1[kgf] and age was 21.5[years]. The thigh-calf contact force and its acting point were measured by settling the pressure distribution sensor sheet between thigh and calf.

Results were normalized by body weight, and shown in Fig.1. The thigh-calf contact force was the largest at the heel-rise squatting posture (1.16BW), and the smallest at heel-contact squatting (0.60BW). The patellofemoral and the tibiofemoral joint forces were shown in the figure. Both forces were the largest at the heel-contact squatting, and were the smallest at the seiza posture. And it might be estimated that the thigh-calf contact force acted anterior when the ankle joint dorsiflexed, and the force was larger when the hip joint extended. The thigh-calf contact force might be decided by not only the knee joint angle but also the hip and ankle joints.

As a limitation of this study, we should mention about the effect of the neglected soft tissues. It could be considerable that the compressive internal force of the soft tissues behind a knee joint substance the tibiofemoral force, and then the real tibiofemoral force might be smaller than the calculated values in this study. Then, the tensile force of quadriceps also might be smaller, and then the patellofemoral joint force is also small.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 50 - 50
1 Apr 2019
Cowie RM Briscoe A Fisher J Jennings LM
Full Access

Introduction. PEEK-OPTIMA™ has been considered as an alternative to cobalt chrome in the femoral component of total knee replacements. Wear simulation studies of both the tibiofemoral and patellofemoral joints carried out to date have shown an equivalent wear rate of UHMWPE tibial and patella components against PEEK and cobalt chrome (CoCr) femoral components implanted under optimal alignment conditions. In this study, fundamental pin-on-plate studies have been carried out to investigate the wear of UHMWPE-on-PEEK under a wider range of contact pressure and cross-shear conditions. Methods. The study was carried out in a 6 station multi-axial pin-on-plate reciprocating rig. UHMPWE pins (conventional, non- sterile) were articulated against PEEK-OPTIMA™ plates, initial Ra ∼0.02µm. The lubricant used was 25% bovine serum (17g/l) supplemented with 0.03% sodium azide. The contact pressure and cross-shear ratio conditions were selected to replicate those in total knee replacements and to be comparable to previously reported studies of UHMPWE-on-CoCr tested in the same pin-on-plate simulators. Contact pressures from 2.1 to 25.5MPa were created by changing the diameter of the contact face of the pin, the cross-shear ratios ranged from 0 (uniaxial motion) to 0.18. Wear of the UHMWPE pins was measured gravimetrically and the surface topography of the plates assessed using a contacting Form Talysurf. N=6 was carried out for each condition and statistical analysis carried out using ANOVA with significance taken at p<0.05. Results. When compared to conventional materials (UHMWPE-on-CoCr), the wear factor of UHMPWE-on-PEEK was generally lower than that of moderately cross-linked UHMWPE-on-CoCr. With increasing contact pressure, there was a trend of decreasing wear factor and a significant difference (p=0.001) in the wear factor of the UHMPWE pins tested under different contact pressures. The wear of UHMWPE-on-PEEK followed a similar trend as that of UHMWPE-on-CoCr. Under uniaxial motion (cross-shear ratio = 0), the wear of UHMWPE was low, introducing multi-axial motion increased the wear of the UHMWPE. There was a significant difference (p<0.01) in the wear factor at different cross-shear ratios however, post hoc analysis showed only the test carried out under unidirectional motion to be significantly different from the other conditions tested. At the conclusion of the studies, there was a polished region in the centre of the plate, however, there was no significant difference in the post-test surface roughness of the plate under any of the conditions tested. Conclusion. The influence of contact pressure and cross-shear ratio on the wear of UHMWPE pins has shown a similar trend when articulating against either PEEK-OPTIMA™ or cobalt chrome plates. The wear factors determined in this study will provide inputs to future computational models which will allow the wear of this all-polymer knee replacement to be investigated under a wider range of clinically relevant conditions


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 90 - 90
1 Apr 2019
Cowie RM Pallem N Briscoe A Fisher J Jennings LM
Full Access

Introduction. PEEK-OPTIMA™ has been considered as an alternative to cobalt chrome in the femoral component of total knee replacements. Whole joint wear simulation studies of both the tibiofemoral and patellofemoral joints carried out to date have shown an equivalent wear rate of UHMWPE tibial and patella components against PEEK and cobalt chrome (CoCr) femoral components. In this study, the influence of third body wear on UHMWPE-on-PEEK was investigated, tests on UHMWPE-on-CoCr were carried out in parallel to compare PEEK to a conventional femoral component material. Methods. Wear simulation was carried out in simple geometry using a 6-station multi-directional pin-on-plate simulator. 5 scratches were created on each PEEK and CoCr plate perpendicular to the direction of the wear test using a diamond stylus to produce scratches with a geometry similar to that observed in retrieved CoCr femoral components. To investigate the influence of scratch lip height on wear, scratches of approximately 1, 2 and 4µm lip height were created. Wear simulation of GUR 1020 UHMWPE pins (conventional, non-sterile) against the plates was carried out for 1 million cycles (MC) using 17g/l bovine serum as a lubricant using kinematic conditions to replicate the average contact pressure and cross-shear in a total knee replacement. Wear of UHMWPE pins was measured gravimetrically and the surface topography of the plates assessed using a contacting Form Talysurf. Wear factors of the pins against the scratched plates were compared to unscratched controls (0µm lip height). Minimum n=3 for each condition and statistical analysis carried out using ANOVA with significance taken at p<0.05. Results. For the control tests (0µm lip height), the wear factor of UHMWPE pins was similar (p=0.64) against PEEK and CoCr plates. Against CoCr, with an increasing lip height, an exponential increase in wear factor of UHMWPE pins was observed; for PEEK, with increasing lip height, the wear factor did not show an exponential increase. When articulated against the largest scratches, 4µm, the wear factor of UHMWPE was significantly higher against CoCr than PEEK (p=0.01). At the conclusion of the study, on the PEEK plates, a polishing effect of the pin against the plates was observed and in the area of the wear test, the lip height of the scratches was lower than pre-test values; for the CoCr plates, no change in lip height was measured after 1MC wear simulation. Conclusion. The exponential relationship between scratch lip height in CoCr and wear of UHMWPE has previously been described. However, the trend in the wear of UHMWPE was different when articulating against scratched PEEK compared to CoCr, with a significantly higher wear factor of UHMWPE against CoCr than PEEK at a scratch lip height of 4µm. This study suggests that the third body wear behaviour of this all-polymer knee replacement will be different to that of conventional implant materials


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 133 - 133
1 May 2016
Wright S Gheduzzi S Miles A
Full Access

Introduction. Traditional applied loading of the knee joint in experimental testing of RTKR components is usually confined to replicating the tibiofemoral joint alone. The second joint in the knee, the patellofemoral joint, can experience forces of up to 9.7 times body weight during normal daily living activities (Schindler and Scott 2011). It follows that with such high forces being transferred, particularly in high flexion situations such as stair climbing, it may be important to also represent the patellofemoral joint in all knee component testing. This research aimed to assess the inclusion of the patellofemoral joint during in vitro testing of RTKR components by comparing tibial strain distribution in two experimental rigs. The first rig included the traditional tibiofemoral joint loading design. The second rig incorporated a combination of both joints to more accurately replicate physiological loading. Five implanted tibia specimens were tested on both rigs following the application of strain gauge rosettes to provide cortical strain data through the bone as an indication of the load transfer pattern. This investigation aimed to highlight the importance of the applied loading technique for pre-clinical testing and research of knee replacement components to guide future design and improve patient outcomes. Methods. Five composite tibias (4th Generation Sawbones) were prepared with strain gauge rosettes (HBM), correctly aligned and potted using guides for repeatability across specimens. The tibias were then implanted with Stryker Triathlon components according to surgical protocol. The first experimental rig was developed to replicate traditional knee loading conditions through the tibiofemoral joint in isolation. The second experimental rig produced an innovative method of replicating a combination of the tibiofemoral and patellofemoral joint loading scenarios. Both rigs were used to assess the load distribution through the tibia using the same tibia specimens and test parameters for comparison integrity (Figure 1). The cortical strains were recorded under an equivalent 500 N cyclical load applied at 10° of flexion by a hydraulic test machine. Results. The average results comparing both experimental rigs at three strain gauge locations are shown in Figure 2. Paired t-tests were performed on all results and a p value of p<0.05 was considered significant. No significant differences were found between the rigs. There was a trend towards a reduction in proximal principal strain with the inclusion of the patellofemoral joint (p=0.058). Discussion. The results of this study indicate that there is no significant difference in tibial load transfer between the traditional and novel applied loading techniques at small flexion angles. There is a trend towards a reduction in proximal strain when including the patellofemoral joint. This reduction may be linked to the patella tendon force counteracting the effect of tibiofemoral loading at this small flexion angle. At high flexion angles the patellofemoral reaction load increases significantly relative to the tibiofemoral load. This will have a significant effect on tibial strains and so it is recommended that testing at higher flexion angles should be performed in a combined loading rig