Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 79 - 79
2 Jan 2024
Rasouligandomani M Chemorion F Bisotti M Noailly J Ballester MG
Full Access

Adult Spine Deformity (ASD) is a degenerative condition of the adult spine leading to altered spine curvatures and mechanical balance. Computational approaches, like Finite Element (FE) Models have been proposed to explore the etiology or the treatment of ASD, through biomechanical simulations. However, while the personalization of the models is a cornerstone, personalized FE models are cumbersome to generate. To cover this need, we share a virtual cohort of 16807 thoracolumbar spine FE models with different spine morphologies, presented in an online user-interface platform (SpineView). To generate these models, EOS images are used, and 3D surface spine models are reconstructed. Then, a Statistical Shape Model (SSM), is built, to further adapt a FE structured mesh template for both the bone and the soft tissues of the spine, through mesh morphing. Eventually, the SSM deformation fields allow the personalization of the mean structured FE model, leading to generate FE meshes of thoracolumbar spines with different morphologies. Models can be selectively viewed and downloaded through SpineView, according to personalized user requests of specific morphologies characterized by the geometrical parameters: Pelvic Incidence; Pelvic Tilt; Sacral Slope; Lumbar Lordosis; Global Tilt; Cobb Angle; and GAP score. Data quality is assessed using visual aids, correlation analyses, heatmaps, network graphs, Anova and t-tests, and kernel density plots to compare spinopelvic parameter distributions and identify similarities and differences. Mesh quality and ranges of motion have been assessed to evaluate the quality of the FE models. This functional repository is unique to generate virtual patient cohorts in ASD. Acknowledgements: European Commission (MSCA-TN-ETN-2020-Disc4All-955735, ERC-2021-CoG-O-Health-101044828)


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 33 - 33
1 Dec 2021
Kakadiya G Chaudhary K
Full Access

Abstract. Objectives. to evaluate the efficacy and safety of topically applied tranexamic acid (TXA) in thoracolumbar spinal tuberculosis surgery, posterior approach. Methods. Thoracolumbar spine tuberculosis patients who requiring debridement, pedicle screw fixation and fusion surgery were divided into two groups. In the TXA group (n=50), the wound surface was soaked with TXA (1 g in 100 mL saline solution) for 3 minutes after exposure, after decompression, and before wound closure, and in the control group (n=116) using only saline. Intraoperative blood loss, drain volume 48 hours after surgery, amount of blood transfusion, transfusion rate, the haemoglobin, haematocrit after the surgery, the difference between them before and after the surgery, incision infection and the incidence of deep vein thrombosis between the two groups. Results. EBL for the control group was 783.33±332.71 mL and for intervention group 410.57±189.72 mL (p<0.001). The operative time for control group was 3.24±0.38 hours and for intervention group 2.99±0.79 hours (p<0.695). Hemovac drainage on days1 and 2 for control group was 167.10±53.83mL and 99.33±37.5 mL, respectively, and for intervention group 107.03±44.37mL and 53.38±21.99mL, respectively (p<0.001). The length of stay was significantly shorter in the intervention group (4.8±1.1 days) compared to control group (7.0±2.3 days). There was bo different in incision side infection and DVT. Conclusions. Topical TXA is a viable, cost-effective method of decreasing perioperative blood loss in major spine surgery with fewer overall complications than other methods. Further studies are required to find the ideal dosage and timing


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 91 - 91
1 May 2017
Karakasli A Sekik E Karaaslan A Ertem F Kızmazoğlu C Havitcioglu H
Full Access

Background. While the biomechanical properties of trans-pedicular screws have proven to be superior in the lumbar spine, little is known concerning pullout strength of trans-pedicle screws in comparison to different distal terminal constructs like sublaminar hooks alone, trans pedicular screws with sublaminar hooks and clow hooks alone in the thoracolumbar spine surgery. In vitro biomechanical pullout testing was performed to evaluate the axial pullout strength of four different distal terminal constructs in thoracolumbar spine surgery. Methods. 32 fresh-frozen lamb spines were used. The lamb spines were divided into four groups, each group is composed of eight lamb spine cadavers with a different distal fixation pattern was used to terminate the construct at L1. (Group 1) trans-pedicular screws alone, (Group 2) sublaminar hooks alone, (Group 3) trans-pedicular screws augmented with a sublaminar hooks via a domino connector and (Group 4) clow hooks alone. Results. The average pullout strength of group 1 was 927N, group2 was 626N, group 3 was 988N and group 4 was 972N. Group 3 and 4 showed the most significant pullout forces when compared to group 1 and group 2. However Group 3 and group 4 didn't show any significant statistical difference when compared to each others. Conclusion. Our study thus suggests that the strongest construct that may reduce the pullout phenomina in the distal fixation constructs are the trans-pedicular screw with laminar hooks. It is strongly advised to be used in osteoporotic bones and in conditions where pullout strength is required to be enhanced. But farther prospective clinical studies are needed to clearly demonstrate the beneficial effect of a trans-pedicular screw augmented with a laminar hooks in reducing the risk of distal instrumentation pullout. Level of Evidence. Level 5. Disclosure. The authors declare that no conflict of interests were associated with the present study


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 81 - 81
1 Mar 2021
Roth AK Willem PC van Rhijn LW Arts JJ Ito K van Rietbergen B
Full Access

Currently, between 17% of patients undergoing surgery for adult spinal deformity experience severe instrumentation related problems such as screw pullout or proximal junctional failure necessitating revision surgery. Cables may be used to reinforce pedicle screw fixation as an additive measure or may provide less rigid fixation at the construct end levels in order to prevent junctional level problems. The purpose of this study is to provide insight into the maximum expected load during flexion in UHMWPE cable in constructs intended for correction of adult spine deformity (degenerative scoliosis) in the PoSTuRe first-in-man clinical trial. Following the concept of toppinoff, a new construct is proposed with screw/cable fixation of rods at the lower levels and standalone UHMWPE cables at the upper level (T11). A parametric FE model of the instrumented thoracolumbar spine, which has been previously validated, was used to represent the construct. Pedicle screws are modeled by assigning a rigid tie constraint between the rod and the lamina of the corresponding spinal level. Cables are modeled using linear elastic line elements, fixing the rod to the lamina medially at the cranial laminar end and laterally at the caudal laminar end. A Youngs modulus was assigned such that the stiffness of the line element was the same as that of the cable. An 8 Nm flexion moment was applied to the cranial endplate. The maximum value of the force in the wire (80 N) is found at the T11 (upper) level. At the other levels, forces in the cable are very small because most of the force is carried by the screw (T12) or because the wires are force shielded by the contralateral and adjacent level pedicle screws (L2, L3). The model provides first estimates of the forces that can be expected in the UHMWPE cables in constructs for kyphosis correction during movement. It is expected that this approach can help in defining the number of wires for optimal treatment


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 40 - 40
1 Apr 2018
Roth A van der Meer R Willems P van Rhijn L Arts J Ito K van Rietbergen B
Full Access

INTRODUCTION. Growth-guidance constructs are an alternative to growing rods for the surgical treatment of early onset scoliosis (EOS). In growth-guidance systems, free-sliding anchors preserve longitudinal spinal growth, thereby eliminating the need for surgical lengthening procedures. Non-segmental constructs containing ultra-high molecular weight polyethylene (UHMWPE) sublaminar wires have been proposed as an improvement to the traditional Luque trolley. In such a construct, UHMWPE sublaminar wires, secured by means of a knot, serve as sliding anchors at the proximal and distal ends of a construct, while pedicle screws at the apex prevent rod migration and enable curve derotation. Ideally, a construct with the optimal UHMWPE sublaminar wire density, offering the best balance between providing adequate spinal fixation and minimizing surgical exposure, is designed preoperatively for each individual patient. In a previous study, we developed a parametric finite element (FE) model that potentially enables preoperative patient-specific planning of this type of spinal surgery. The objective of this study is to investigate if this model can capture the decrease in range of motion (ROM) after spinal fixation as measured in an experimental study. MATERIALS AND METHODS. In a previous in vitro study, the ROM of an 8-segment porcine spine was measured before and after instrumentation, using different instrumentation constructs with a sequentally decreasing number of wire fixation points. In the current study, the parametric FE model of the thoracolumbar spine was first validated relative to ROM values reported in the literature. The rods, screws, and sublaminar wires were implemented, and the model was subsequently used to replicate the in vitro tests. The experimental and simulated ROM”s for the different instrumentation conditions were compared. RESULTS. Good agreement between in vitro biomechanical tests and FE simulations was observed in terms of the decrease in ROM for the complete construct with wires at each level. The stepwise increase in total ROM with decreasing number of wires at the construct ends was less prominent in silico in comparison to in vitro. CONCLUSION. Important first steps in the implementation and validation of a growth-guidance construct for EOS patients in a patient-specific FE model of the spine have been made in this study. The parametric nature of the FE model allows for rapid personalization. Although further improvements to the model will be necessary to better distinguish between different spinal instrumentation constructs, we conclude that the model can well capture essential aspects of spinal motion and the overall effect of instrumentation


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 298 - 298
1 Jul 2014
Llombart-Blanco R Llombart-Ais R Barrios C Beguiristain J
Full Access

Summary Statement. Bilaretal epiphysiodesis of he neurocentral cartilages causes shortening of the sagittal length of the pedicles and a subsequent spinal stenosis at the operated segments, resembling that found in patients with achrondroplasia. Introduction. The introduction of pedicle screws in the immature spine may have implications for the growth of the vertebra. The effect of blocking the growth of neurocentral cartilage (NC) is not yet fully defined. Block hypothetically leads to a bilateral symmetrical alteration of the vertebral growth. Using an experimental animal model, our goal is to analyze if a bilateral epiphysiodesis of the NC using pedicle screws is able to induce narrowing of the spinal canal in the thoracolumbar spine. Experimental animals and Methods. A total of 24 domestic pigs were operated on by bilateral blocking of the NC using pedicle screws. The animals were divided into 4 groups depending on the level of blockage: A, low thoracic levels; B, thoracolumbar transitional hinge; C, upper lumbar spine; and D, blocking of the caudal lumbar level below L5 segment. Different morphological, morphometric and standard radiological parameters were analyzed at the thoracic and lumbar vertebrae of the animals. The deviation from the physiological parameters was established by comparing all parameters obtained in the NC-blocked animals with those acquired in 14 pigs without NC blocking. These animals were considered as the control group. Results. None of the animals that underwent NC epiphysiodesis showed asymmetrical spinal growth inducing deformities in the coronal plane. There was neither rotation nor wedging of the vertebral bodies. Whatever the level involved, NC epiphysiodesis caused shortening of the sagittal length of the pedicles and a subsequent decreasing of the antero-posterior diameter of the spinal canal. These features resulted in a frank spinal stenosis at the operated levels. However, the transverse diameter of the spinal canal was conserved in the coronal plane. In the sagittal plane, blocking of the neurocentral cartilage conditioned a lumbar hyperlordosis with compensatory kyphosis of the upper level to the operated vertebra. Conclusions. Symmetrical growth arresting of neurocentral cartilages induces a narrow spinal canal by decreasing the sagittal diameter similar to that observed in patients with achondroplasia. The most affected structure was the development of the vertebral pedicles


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 220 - 220
1 Jul 2014
Blair-Pattison A Henke J Penny G Hu R Swamy G Anglin C
Full Access

Summary Statement. Incorrect pedicle screw placement can lead to neurological complications. Practice outside the operating room on realistic bone models, with force feedback, could improve safety. Pedicle forces in cadaveric specimens are reported, to support development of a training tool for residents. Introduction. Inserting screws into the vertebral pedicles is a challenging step in spinal fusion and scoliosis surgeries. Errors in placement can lead to neurological complications and poor mechanical fixation. The more experienced the surgeon, the better the accuracy of the screw placement. A physical training system would provide orthopaedic residents with the feel of performing pedicle cannulation before operating on a patient. The proposed system consists of realistic bone models mimicking the geometry and material properties of typical patients, coupled with a force feedback probe. The purpose of the present study was to determine the forces encountered during pedicle probing to aid in the development of this training system. Methods. We performed two separate investigations. In the first study, 15 participants (9 expert surgeons, 3 fellows, 3 residents) were asked to press a standard pedicle awl three times onto a mechanical scale, blinded to the force, demonstrating what force they would apply during safe pedicle cannulation and during unsafe cortical breach. In the second study, three experienced surgeons used a standard pedicle awl fitted with a one-degree of freedom load cell to probe selected thoracolumbar vertebrae of eight cadaveric specimens to measure the forces required during pedicle cannulation and deliberate breaching, in randomised order. A total of 42 pedicles were tested. Results. Both studies had wide variations in the results, but were in general agreement. Cannulation (safe) forces averaged approximately 90 N (20 lb) whereas breach (unsafe) forces averaged approximately 135–155 N (30–35 lb). The lowest average forces in the cadaveric study were for pedicle cannulation, averaging 86 N (range, 23–125 N), which was significantly lower (p<0.001) than for anterior breach (135 N; range, 80–195 N); medial breach (149 N; range, 98–186 N) and lateral breach (157 N; range, 114–228 N). There were no significant differences among the breach forces (p>0.1). Cannulation forces were on average 59% of the breach forces (range, 19–84%) or conversely, breach forces were 70% higher than cannulation forces. Discussion. To our knowledge, axial force data have not previously been reported for pedicle cannulation and breaching. A large range of forces was measured, as is experienced clinically. Additional testing is planned with a six-degree-of-freedom load cell to determine all of the forces and moments involved in cannulation and breaching throughout the thoracolumbar spine. These results will inform the development of a realistic bone model as well as a breach prediction algorithm for a physical training system for spine surgery. The opportunity to learn and practice outside of the operating room, including learning from deliberate mistakes, should increase the confidence and comprehension of residents performing the procedure, enhance patient safety, reduce surgical time, and allow faster progression of learning inside the operating room