Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:

Abstract. A study was done to test the strength of various configurations of tension band wiring (TBW) and we report clinical results of ‘Horizontal Figure of Eight TBW’ (H – 8 TBW). In an experimental lab, a model of the fractured patella was mounted on a Nene tensile testing machine and various configurations of TBWs were tested in different positions of Kirschner wires. The strength of TBW and various knots securing the ends of wires were analysed on load/displacement graphs. The experimental results were compared with the theoretical results using trigonometry and mathematical equations. Since 1986, H – 8 TBW (Sonanis and Bhende modification) was used clinically in 42 patients (40 fractured patella, and 2 greater trochanteric osteotomies) in 26 males and 16 females and all patients were followed up to average 18 months. Experimentally H – 8 TBW (0.8mm wire) could resist maximum distraction force of 700 N and achieved maximum compression. Placement of the two Kirschner wires at the mid way between centre and edge of patella at the level of fracture site achieved optimum rotational stability and compression. Crimping method of gripping the ends of wires was the most secured method (120 N). Clinically bony union using H-8 TBW was achieved in all 41 patients. Complications seen were wire discomfort in 3 patients and one death. We conclude that H – 8 TBW achieved maximum compression, optimum K wire placement was at the 1/4th distance from the edge of the patella, and crimping the ends of wire secured best fixation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 105 - 105
1 May 2016
Kim J Park B Cho H
Full Access

Purpose. To observe the follow-up results of standard cemented bipolar hemiarthroplasty with double loop and tension band wiring technique for treatment of unstable intertrochanteric hip fractures in elderly patients with osteoporosis. Materials and Methods. From May 2000 to May 2006, 86 cemented bipolar hemiarthroplasties were performed in elderly patients who had unstable intertrochanteric fractures. The mean age at the time of surgery was 82 years old. The average follow-up period were 5.3 years. We evaluated post-operative results after operation by clinical and radiographic methods. Results. Clinically, the final follow-up of Harrsi hip score was noted 79.2. The mean time needed for full weight bearing following surgery was 4.2 weeks and 82.5% of patients regained their preoperative ambulatory level. All patients achieved union in lesser trochanter fracuture, but great trochanter displacement were observed in 4 cases. There was one case of acetabular erosion. Post-operative superficial infections were found in 2 cases. 1 case with stem subsidence(<5 mm) showed satisfactory results without further subsidence in follow-ups. Conclusion. If we properly apply indications in technique with cemented bipolar hemiarthroplasty in the treatment of unstable intertrochanteric hip fracture in elderly, we will achieve systematic postoperative rehabilitation, pain control and handy nursing which is its one of merits


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_14 | Pages 22 - 22
1 Jul 2016
Singh S Behzadian A Madhusudhan T Kuiper J Sinha A
Full Access

We investigated whether an alternative tension band wire technique will produce greater compression and less displacement at olecranon (elbow) fracture sites compared to a standard figure of eight tension band technique. Olecranon fractures are commonly treated with tension band wiring using stainless steel wire in a figure of eight configuration. However recently published studies have raised doubts over the validity of the tension band concept proving that the standard figure of eight configuration does not provide fracture compression when the elbow is flexed. We propose an alternative tension band technique where the figure of eight is applied in a modified configuration producing greater compression across the fracture. An artificial elbow joint was simulated using artificial forearm (ulna) and arm (humerus) bones. The design simulated the action of the muscles around the elbow joint to produce flexion and extension. There were two arms to this investigation. (1) Standard tension band wire configuration with stainless steel. (2) Modified tension band wire configuration with stainless steel. The simulated elbow was put through a range of movement and sensors measured the compression at the articular and non-articluar surfaces of the fracture. Measurements were taken for compression with different weights applied to challenge both the techniques of tension band wiring. Measurements from the non articular surface of the fracture demonstrated greater compression with alternative tension band technique. However it was not statistically significant (ANOVA). Compression at the articular surface of the fracture exhibited statistically significant (p<0.05) greater compression with the alternative technique. Neither technique produced greater compression during flexion of the simulated elbow. The alternative tension band wiring technique proved superior in providing greater compression over the fracture site


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 66 - 66
1 Apr 2018
Chang C Yang C Chen Y Chang C
Full Access

For the management of displaced patellar fractures, surgical fixation using cannulated screws along with anterior tension band wiring is getting popular. Clinical and biomechanical studies have reported that using cannulated screws and a wire instead of the modified tension band with Kirschner wires improves the stability of fractured patellae. However, the biomechanical effect of screw proximity on the fixed construction remains unclear. The aim of this study was to evaluate the mechanical behaviors of the fractured patella fixed with two cannulated screws and tension band at different depths of the patella using finite element method. A patella model with simple transverse fracture [AO 34-C1] was developed; the surgical fixation consisted of two 4.0-mm parallel partial-threaded cannulated screws with a figure-of-eight anterior tension band wiring using a 1.25-mm stainless steel cable. Two different locations, including the screws 5-mm and 10-mm away from the leading edge of the patella, were used. A tension force of 850 N was applied on the patellar apexes at two loading angles (45° and 0° [parallel] to the long axis) to simulate different loading conditions while knee ambulation. The proximal side (base) of the patella was fixed, and the inferior articular surface was defined as a compression-only support in ANSYS to simulate the support from distal femur condyles. Compression-only support enables the articular surfaces of the present patella to only bear compression and no tension forces. Under different loading conditions, the fixed fractured patella yielded higher stability during 0° loading of tension force than during 45° loading. When the screws were parallel placed at the depth of 5 mm away from the patellar surface, the deformation of patellar fragment and maximum gap opening at the fracture site were smaller than those obtained by screws placed at the depth of 10 mm away from the patellar surface. Compared to the superficial screw placement, the deeper placement (10 mm) increased the maximum gap opening at the fracture site by 1.56 times under 45° loading, and 1.58 times under 0° loading. The load on the tension band wire of the 10-mm screw placement was 3.12 times (from 230 to 717 N) higher than that of the 5-mm placement. Under the wire, the contact pressure on the patellar surface was higher with the 10-mm screw placement than the 5-mm screw placement. The peak bone contact pressures with the 10-mm placement were 7.7 times (99.5 to 764 MPa) higher. This is the first numerical study to examine the biomechanical effects of different screw locations on the fixation of a fractured patella using screws and tension band. Based on a higher stability and lower cable tension obtained by the superficial screws placement, the authors recommended the superficial screw placement (5 mm below the leading edge of the patella) rather than the deep screws while fixing the transverse patellar fracture with cannulated screws and cable


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 19 - 19
1 Dec 2016
Pagnano M
Full Access

Intraoperative fractures during primary total hip arthroplasty (THA) can occur on either the acetabular or the femoral side. A range of risk factors including smaller incision surgery, uncemented components, prior surgery, female sex, osteoporosis, and inflammatory arthritis have been identified. Acetabular fractures are rare but when they do occur often are underrecognised. It is not uncommon for intraoperative acetabular fractures to be discovered only postoperatively. Intraoperative acetabular fractures are associated with cementless implants and a number of identified anatomic risk factors. Factors related to surgical technique, including excessive under-reaming, excessive medialization with aggressive reaming, and implant designs such as an elliptical cup design are associated with higher risk. Treatment of acetabular fractures is dependent on whether they are diagnosed intraoperatively or postoperatively. When discovered intraoperatively, supplemental fixation should be added in the form of additional screw fixation, placing a pelvic plate, or using an acetabular reconstruction cage and morselised allografts. Acetabular reamings, obtained during preparation of the acetabulum, can be used for local bone graft. The goal should be stability of both the fracture and acetabular cup. Postoperatively, weight bearing and mobilization protocols may require modification, with many surgeons choosing a period of toe-touch weight-bearing in such cases. Acetabular fractures found postoperatively require the surgeon to make a judgement on the relative stability of the implant and the fracture to determine if immediate revision surgery or protected weight-bearing alone is appropriate. On the femoral side intraoperative fractures can occur around the greater trochanter, the calcar, or in the diaphysis. Fractures of the greater trochanter are problematic because of their tendency to displace due to the attachment of the abductors and the strong force they apply. Tension band wiring techniques will work for many greater trochanteric fractures while a trochanteric plate may be occasionally called for. With either form of fixation strong consideration should be given to 6–8 weeks of protected weight bearing postoperatively. Short longitudinal cracks in the medial calcar region are not rare with uncemented implants. Calcar fractures that do not extend below the lesser trochanter can often be managed with a single cerclage cable. Calcar fractures extending below the lesser trochanter should be scrutinised with additional intraoperative xrays; longer longitudinal cracks can be managed with 2 cables while more complex fractures that exit the diaphysis demand a change to a distally fixed implant and formal fracture reduction. Distal diaphyseal fractures are relatively uncommon in the primary setting, but not rare in the revision setting. When recognised intraoperatively, distal diaphyseal fractures can be treated effectively with cerclage cables. Distal diaphyseal longitudinal cracks noted postoperatively do not typically mandate a return to the OR and instead can be managed with 8 weeks of protected weight bearing


Aims. Compression and absolute stability are important in intra-articular fractures such as transverse olecranon fractures. This biomechanical study aims to compare tension band wiring (TBW) with plate fixation by measuring compression within the fracture. Methods. A cross-over design and synthetic ulna models were used to reduce variation between samples. Identical transverse fractures were created using a 0.5mm saw blade and cutting jig. A Tekscan(tm) force transducer was calibrated and placed within the fracture gap. Twenty TBW or Acumed(tm) plate fixations were performed according to the recommended technique. Compression was measured while the constructs were static and during simulated elbow range of movement exercises. Dynamic testing was performed using a custom jig reproducing cyclical triceps contraction of 20N and reciprocal brachialis contraction of 10N. Both fixation methods were tested on each sample. Half were randomly allocated to TBW first and half to plating first. Data was recorded using F-scan (v 5.72) and analysed using SPSS(tm) (v 16). Paired T-tests compared overall compression and compression at the articular side of the fracture. Results. The mean overall compression for plating was 819N (+/− 602N 95%CI), TBW overall compression: 77N (+/−19N 95%CI) (P=0.039). Articular side compression for plating: 343N (+/− 276N 95%CI), TBW: 1N (+/− 2N 95%CI). (P=0.038). During simulated movements, overall compression reduced in both groups: TBW -14N (+/−7N) Plating -173N (+/−32N) and no increase in articular side compression was detected in the TBW group. Conclusion. Precontoured plates such as the Acumed(tm) olecranon system can provide significantly greater compression, compared to TBW in transverse olecranon fractures. This was significant for compression over the whole fracture surface and specifically at the articular side of the fracture. Also, in TBW, overall compression reduced and articular side compression remained negligible during simulated triceps contraction, challenging the tension band principle


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 9 - 9
1 Sep 2012
Matti Z Unnithan A Hong T
Full Access

Isolated Greater Tuberosity (GT) fractures were described as separate entities from proximal humeral fractures more than 100 years ago. However, there is limited literature available about the functional outcome of the two different types of GT fractures: avulsed and comminuted. To compare functional outcomes of the 2 different types of Greater Tuberosity fractures; simple and comminuted and to determine how these outcomes were affected by associated injuries such as shoulder dislocation and rotator cuff tear. We also looked at the acceptable post fixation displacement of GT fracture and when to consider it mal-reduction (malunion due to over or under reduction) and the acceptable time frame to delay the fixation and still get satisfactory results. We looked at Greater Tuberosity fractures of the humerus in Waikato Hospital between 1999–2009. Radiographs were reviewed by senior Author to classify them into simple and comminuted. Measurements were done by senior Author for post fixation displacement. Operative notes checked by the authors, when in doubt, double-checked by senior author. Outcome scores used: UCLA, ASES and oxford scores to compare functional outcome. We also measured the time off work and time on ACC (Physiotherapy), as well as period of follow up. A total of 35 patients were included in the final analysis were treated operatively. Mean age of the patients was 51 years. M/F ratio was 3/2. Mechanism of injury was predominantly direct force applied to that shoulder. Shoulder dislocation was found in around 77% of patients. Methods of fixation included tension band wiring with or without screws, rotator cuff repair and one T-plate. Follow up time was shorter for simple comminuted fractures (22 v 44 weeks respectively). Outcome scores for patients who sustained simple fractures were slightly higher than those with comminuted fractures but the difference did not reach statistical significance. The groups with dislocation and rotator cuff tear did worse than the other groups in all aspects of the study. Post fixation displacement of GT of less than 5 mm led to a significantly better outcome than displacement of 5mm plus. Better results were obtained when the time between injury and operation was less than 2 weeks. The comminuted group had similar functional outcome to the other group but required much longer follow up. Worse outcome should be expected with dislocation and rotator cuff tear associated with GT fracture. Satisfactory results relate to degree of displacement post fixation of <5 mm. Delay of fracture fixation of >2 weeks results in a less favourable outcome


Bone & Joint 360
Vol. 5, Issue 1 | Pages 26 - 28
1 Feb 2016