Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 124 - 124
11 Apr 2023
Woodford S Robinson D Lee P Abduo J Dimitroulis G Ackland D
Full Access

Total temporomandibular joint (TMJ) replacements reduce pain and improve quality of life in patients suffering from end-stage TMJ disorders, such as osteoarthritis and trauma. Jaw kinematics measurements following TMJ arthroplasty provide a basis for evaluating implant performance and jaw function. The aim of this study is to provide the first measurements of three-dimensional kinematics of the jaw in patients following unilateral and bilateral prosthetic TMJ surgeries. Jaw motion tracking experiments were performed on 7 healthy control participants, 3 unilateral and 1 bilateral TMJ replacement patients. Custom-made mouthpieces were manufactured for each participant's mandibular and maxillary teeth, with each supporting three retroreflective markers anterior to the participant's lip line. Participants performed 15 trials each of maximum jaw opening, lateral and protrusive movements. Marker trajectories were simultaneously measured using an optoelectronic tracking system. Laser scans taken of each dental plate, together with CT scans of each patient, were used to register the plate position to each participant's jaw geometry, allowing 3D condylar motion to be quantified from the marker trajectories. The maximum mouth opening capacity of joint replacement patients was comparable to healthy controls with average incisal inferior translations of 37.5mm, 38.4mm and 33.6mm for the controls, unilateral and bilateral joint replacement patients respectively. During mouth opening the maximum anterior translation of prosthetic condyles was 2.4mm, compared to 10.6mm for controls. Prosthetic condyles had limited anterior motion compared to natural condyles, in unilateral patients this resulted in asymmetric opening and protrusive movements and the capacity to laterally move their jaw towards their pathological side only. For the bilateral patient, protrusive and lateral jaw movement capacity was minimal. Total TMJ replacement surgery facilitates normal mouth opening capacity and lateral and inferior condylar movements but limits anterior condylar motion. This study provides future direction for TMJ implant design


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 51 - 51
1 Jan 2017
Ramos A Mesnard M
Full Access

The Temporomandibular joint (TMJ) is a complex and important joint for daily activities, and the alloplastic implant is recommended as the best solution, after repeated surgeries, failed autogenous grafts, highly inflammatory metabolic arthritis, fibrous or bony ankyloses. Some complications in total TMJ replacement are associated with implant design, screw fixation failure, implant displacement, fibrous tissue formation, (Speculand, et al. 2000). Some numeric studies evaluate the number of screws needed to guarantee the good fixation and suggest a minimum of three (Ramos et al. 2015), but is a controversy conclusion. The Biomet Microfixation TMJ stock prosthesis, Jacksonville, FL, USA is one of the three or four in the market. Clinical studies published by this device between 2005 and 2015 indicate a success rate of around 84 to 91% with improvements in mouth opening, a decrease in pain score and improved quality of life. The present study analyses experimentally the load transfer of this device. The intact, clean cadaveric ramus was instrumented with four rosettes model (KFG-1-120-D17-11 L3M2S, by Kywoa Electronic Instruments Co™, Japan), one in lateral region, two in lateral region and one in lingual face. The condyle was loaded with the temporal reaction; the load was applied constant velocity of 1mm/min in three continuum phases and with three stops at 100N, 200N and 300N. Next, the Biomet microfixation implant was fixed to the same cadaveric mandibular ramus after resection. The implant was 50mm in length. It was fixed with five 6AL/4V Titanium self-tapping screws with 2.7mm diameter were long enough to establish a bi-cortical support. The screws were screwed into the bone with a torque-screwdriver a constant torque of 0.2Nm. The same rosettes were analyzed before and after implantation and the mandible displacement two. The experimental results for the mandibular ramus present a linear behavior up to 300N load in condyle, with the Biomet implant influencing strain distribution; the maximum influence was near the implant (rosette #4) is around 59%. The average vertical displacement of the mandibular ramus (300N) was measured by machine: 1.18 (±0.02) mm for the intact mandibular ramus and 1.21 (±0.02) mm for the implanted one, which represents a 2.8% differences between the experimental models and reduce of stiffness. The maximum principal strain deformation was observed in the rosette #3 with 1360µε more 20% than the intact mandible for 300N of reaction. The experimental results show that the Biomet TMJ mandibular ramus implant changes the load transfer in the ramus, compared to the intact, with its strain shielding effect. The results indicate the minimum number of screws is three to guarantee a good load transfer but the surface preparation of condyle presents an important factor