Aims. Radiotherapy is a well-known local treatment for spinal metastases. However, in the presence of postoperative
Mesenchymal Stem Cells (MSCs) are key regulators in senile osteoporosis and in bone formation and regeneration. MSCs are therefore suitable candidates for stem cells mediated gene therapy of bone. Recombinant human Bone Morphogenetic Protein-2 (rhBMP-2) is a highly osteoinductive cytokine, promoting osteogenic differentiation of MSCs. We hypothesized that genetically engineered MSCs, expressing rhBMP2, can be utilized for targeted cell mediated gene therapy for local and systemic bone disorders and for bone/cartilage tissue engineering. Engineered MSCs expressing rhBMP-2 have both autocrine and paracrine effects enabling the engineered cells to actively participate in bone formation. We conditionally expressed rhBMP2 (tet-controlled gene expression, tet-off system) in mouse and human mesenchymal stem cells. RhBMP2 expressing clones (tet-off and adeno-BMP2 infected MSCs), spontaneously differentiated into osteogenic cells in vitro and in vivo. Engineered MSCs were transplanted locally and tracked in vivo in radial segmental defects (regenerating site) and in ectopic muscular and subcutaneous sites (non-regenerating sites). In vitro and in vivo analysis revealed rhBMP2 expression and function, confirmed by RT-PCR, ELISA, western blot, immunohistochemistry and bioassays. Secretion of rhBMP2 in vitro was controlled by tetracycline and resulted in secretion of 1231 ng/24 hours/106 cells. Quantitative Micro-CT 3-Dimentional reconstruction revealed complete bone regeneration regulated by tetracycline in vivo, indicating the potential of this platform for bone and cartilage tissue engineering. Angiogenesis, a crucial element in tissue engineering, was increased by 10-folds in transplants of rhBMP2 expressing MSCs (tet-off), shown by histomorphometry and MRI analysis (p<
0.05). In order to establish a gene therapy platform for systemic bone disorders, MSCs with tet-controlled rhBMP-2 expression, were injected systemically (iv). These engineered MSCs were genetically modified in order to achieve homing to the bone marrow. Systemic non invasive tracking of engineered MSCs was achieved by recording topographical bioluminescence derived from luciferase expression detected by a coupled charged CCD imaging camera. For clinical situations that require immuno-isolation of transplanted cells, we developed an additional platform utilizing cell encapsulation technique. Immuno-isolated engineered MSCs, with tet-controlled rhBMP-2 expression, encapsulated with sodium alginate induced bone formation by paracrine effect of secreted rhBMP-2. Finally, we have characterized a novel tissue-engineering platform composed of engineered MSCs and biodegradable polymeric scaffolds, creating a 3D bone tissue in rotating Bioreactors. Our results indicate that engineered MSCs and polymeric scaffolds can be utilized for ex vivo bone tissue engineering. We therefore conclude that genetically engineered MSCs expressing rhBMP-2 under tetracycline control are applicable for: a) local and
Aims. Patients with differentiated thyroid carcinomas (DTCs) have a favourable long-term survival. Spinal metastases (SMs) cause a decline in performance status (PS), directly affecting mortality and indirectly preventing the use of
Primary bone tumors are rare, complex and highly heterogeneous. Its diagnostic and treatment are a challenge for the multidisciplinary team. Developments on tumor biomarkers, immunohistochemistry, histology, molecular, bioinformatics, and genetics are fundamental for an early diagnosis and identification of prognostic factors. The personalized medicine allows an effective patient tailored treatment. The bone biopsy is essential for diagnosis. Treatment may include
Aims. Fungal periprosthetic joint infections (fPJIs) are rare complications, constituting only 1% of all PJIs. Neither a uniform definition for fPJI has been established, nor a standardized treatment regimen. Compared to bacterial PJI, there is little evidence for fPJI in the literature with divergent results. Hence, we implemented a novel treatment algorithm based on three-stage revision arthroplasty, with local and
In chronically infected fracture non-unions, treatment requires extensive debridement to remove necrotic and infected bone, often resulting in large defects requiring elaborate and prolonged bone reconstruction. One approach includes the induced membrane technique (IMT), although the differences in outcome between infected and non-infectious aetiologies remain unclear. Here we present a new rabbit humerus model for IMT secondary to infection, and, furthermore, we compare bone healing in rabbits with a chronically infected non-union compared to non-infected equivalents. A 5 mm defect was created in the humerus and filled with a polymethylmethacrylate (PMMA) spacer or left empty (n=6 per group). After 3 weeks, the PMMA spacer was replaced with a beta-tricalcium phosphate (chronOs, Synthes) scaffold, which was placed within the induced membrane and observed for a further 10 weeks. The same protocol was followed for the infected group, except that four week prior to treatment, the wound was inoculated with Staphylococcus aureus (4×10. 6. CFU/animal) and the PMMA spacer was loaded with gentamicin, and
Treatment of bone infection often includes a burdensome two-stage revision. After debridement, contaminated implants are removed and replaced with a non-absorbable cement spacer loaded with antibiotics. Weeks later, the spacer is exchanged with a bone graft aiding bone healing. However, even with this two-stage approach infection persists. In this study, we investigated whether a novel 3D-printed, antibiotic-loaded, osteoinductive calcium phosphate scaffold (CPS) is effective in single-stage revision of an infected non-union with segmental bone loss in rabbits. A 5 mm defect was created in the radius of female New Zealand White rabbits. The bone fragment was replaced, stabilized with cerclage wire and inoculated with Staphylococcus aureus (MSSA). After 4 weeks, the infected bone fragment was removed, the site debrided and a spacer implanted. Depending on group allocation, rabbits received: 1) PMMA spacer with gentamycin; 2) CPS loaded with rifampin and vancomycin and 3) Non-loaded CPS. These groups received systemic cefazolin for 4 weeks after revision. Group 4 received a loaded CPS without any adjunctive
Aim. Fungal orthopaedic infections most commonly affect people with complex surgical histories and existing comorbidities. Recurrence and re-infection rates are high, even with optimal surgical and systemic antifungal treatment. AmBisome liposomal amphotericin B has been suggested for local antifungal therapy, as an adjunctive treatment for fungal osteoarticular infections. Few case series have examined its clinical use when combined with polymethylmethacrylate cement PMMA), or with absorbable local antibiotic carriers. We aimed to evaluate the clinical use of local antifungal therapy with AmBisome liposomal amphotericin B (ABlaB), including tolerated doses, serious adverse events, and treatment outcomes. Method. A retrospective cohort of all patients treated with local antifungal therapy with ABlaB between January 2016 and January 2021 in a specialist orthopaedic hospital was identified using pharmacy records. Renal function, serious adverse events during treatment, surgical outcomes including spacer fracture and infection recurrence, were identified from electronic clinical records. The project was approved by the Institutional Review Board (clinical audit 6871). Results. 13 operations involving local antifungal therapy with ABlaB, in 12 patients, were identified. Eleven were infected with Candida species and one with Aspergillus. Mean follow-up was 22 months (range 4–46). Ten first stage arthroplasty revisions, 2 second stage arthroplasty revisions, and one debridement and removal of metalwork for fracture-related infection were performed. Locally implanted doses of ABlaB ranged from 100mg to 3600mg (50–400mg per 40g mix of PMMA). Six patients received ABlaB in absorbable antibiotic carriers containing calcium sulphate. This was noted to delay carrier setting. Patients were also given
Aim. Local antibiotics, delivered to the site of infection, achieve high tissue concentrations and are used as an adjunct to
Introduction and Objective. Management of bone loss associated with bone contamination or infection represents a double biological and clinical challenge frequent in traumatology. The advent of new biomaterials can allow a different approach in the treatment of bone gap. The purpose of this study was to evaluate the prophylactic and therapeutic effectiveness of addition of a new absorbable bone substitute (BS) eluting different antibiotics in reconstruction of bone defects after infections and fractures with soft tissue damage. Materials and Methods. We conducted a review of patients with contaminated or infected bone defects treated using a new biomaterial, a porous composite of collagen matrices and Beta tricalcium phosphate (β TCP), able to provide a long-term release of different antibiotics. We have included treatment of osteomyelitis and osteosynthesis of exposed fracture (Gustilo Anderson 1–3b) or fractures with soft tissue damage and high risk of contamination. Surgical technique included debridement filling bone defect with BS eluting antibiotics, osteosynthesis (plate, nail, external fixator, kirschner wire), soft tissue coverage, and
Aims. Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models. Methods. Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted. Results. A total of 43 studies were included. Animal models used included fracture-related infections (ten studies), periprosthetic joint infections (five studies), spinal infections (three studies), other implant-associated infections, and osteomyelitis. The most common bacteria were Staphylococcus species. Biofilm was most often observed with scanning electron microscopy. The natural history of biofilm revealed that the process of bacteria attachment, proliferation, maturation, and dispersal would take 14 days. For
Introduction. Patients with metastatic spinal cord compression (MSCC) or unstable spinal lesions warrant early surgical consultation. In multiple myeloma, chemotherapy and radiotherapy have the potential to decompress the spinal canal effectively in the presence of epidural lesions. Mechanical stability conferred by bracing may potentiate intraosseous and extraosseous bone formation, thus increasing spinal stability. This study aims to review the role of non-operative management in myeloma patients with a high degree of spinal instability, in a specialist tertiary centre. Methods. Retrospective analysis of a prospectively collected database of 83 patients with unstable myelomatous lesions of the spine, defined by a Spinal Instability Neoplastic Score (SINS) of 13–18. Data collected include patient demographics, systemic treatment, neurological status, radiological presence of cord compression, most unstable vertebral level and presence of intraosseous and extraosseous bone formation. Post-treatment scores were calculated based on follow-up imaging which was carried out at 2 weeks for cord compression and 12 weeks for spinal instability. A paired t-test was used to identify any significant difference between pre- and post-treatment SINS and linear regression was used to assess the association between variables and the change in SINS. Results. A significant reduction in SINS was observed from a pre-treatment average score of 14 to a score of 9, following treatment for myeloma (p<0.001). A higher initial score and a younger age were associated with a larger overall reduction in SINS (p<0.001 and p=0.02 respectively). No single variable (bisphosphates, chemotherapy, radiotherapy and steroids) had a significant association with SINS reduction. 25 (30%) patients had spinal cord compression, all of which showed radiological resolution of cord compression at 2 weeks. No patients developed neurological deterioration during treatment and all patients had an improvement in their pain scores. 64 (77%) patients had evidence of intraosseous and/or extraosseous bone formation on their follow-up scan. Conclusion. Non-operative management in the form of bracing and
Local antimicrobial therapy is an integral aspect of treating orthopaedic device related infection (ODRI), which is conventionally administered via polymethylmethacrylate (PMMA) bone cement. PMMA, however, is limited by a suboptimal antibiotic release profile and a lack of biodegradability. In this study, we compare the efficacy of PMMA versus an antibioticloaded hydrogel in a single- stage revision for chronic methicillin-resistant Staphylococcus aureus (MRSA) ODRI in. sheep. Antibiofilm activity of the antibiotic combination (gentamicin and vancomycin) was determined in vitro. Swiss alpine sheep underwent a single-stage revision of a tibial intramedullary nail with MRSA infection. Local gentamicin and vancomycin therapy was delivered via hydrogel or PMMA (n = 5 per group), in conjunction with
Fracture related infection remains a major challenge in musculoskeletal trauma surgery. Despite best practice, treatment strategies suffer from high failure rates due to antibiotic resistance and tolerance. Bacteriophages represent a promising alternative as they retain activity against such bacteria. However, optimal phage administration protocols remain unknown, although injectable hydrogels, loaded with phage and conventional antibiotics, may support conventional therapy. In this study we tested the activity of meropenem, and two newly isolated bacteriophages (ϕ9 and ϕ3) embedded within alginate-chitosan microbeads and a hydrogel. Antibiotic and phage stability and activity were monitored in vitro, over a period of 10 days. In vivo, the same material was tested in treatment of a 5-day old Pseudomonas aeruginosa infection of a tibial plate osteotomy in mice. Treatment involved debridement and 5 days of
Aim. In trauma surgery, the development of biomaterial-associated infections (BAI) is one of the most common complications affecting trauma patients, requiring prolonged hospitalization and the intensive use of antibiotics. Following the attachment of bacteria on the surface of the biomaterial, the biofilm-forming bacteria could initiate a chronic implant-related infection. Despite the use of conventional local and
Aim. Periprosthetic joint infection (PJI) is a complication of total joint arthroplasty that typically requires revision surgery for treatment. Systemic antibiotics are usually held prior to surgery to improve yield of intraoperative cultures. However, recent studies suggest that preoperative aspirations have a high concordance with intraoperative cultures, which may allow surgeons to initiate antibiotic treatment earlier. The purpose of the study was to investigate the effect of Pre-surgical
Lung cancer is the most common cancer diagnosed, the leading cause of cancer-related deaths, and bone metastases occurs in 20–40% of lung cancer patients. They often present symptomatically with pain or skeletal related events (SREs), which are independently associated with decreased survival. Bone modifying agents (BMAs) such as Denosumab or bisphosphonates are routinely used, however no specific guidelines exist from the National Comprehensive Cancer Center or the European Society of Medical Oncologists. Perhaps preventing the formation of guidelines is the lack of a high-quality quantitative synthesis of randomized controlled trial (RCT) data to determine the optimal treatment for the patient important outcomes of 1) Overall survival (OS), 2) Time to SRE, 3) SRE incidence, and 4) Pain Resolution. The objective of this study was to perform the first systematic review and network meta-analysis (NMA) to assess the best BMA for treatment of metastatic lung cancer to bone. We conducted our study in accordance to the PRISMA protocol. We performed a librarian assisted search of MEDLINE, PubMed, EMBASE, and Cochrane Library and Chinese databases including CNKI and Wanfang Data. We included studies that are RCTs reporting outcomes specifically for lung cancer patients treated with a bisphosphonate or Denosumab. Screening, data extraction, risk of bias and GRADE were performed in duplicate. The NMA was performed using a Bayesian probability model with R. Results are reported as relative risks, odds ratios or mean differences, and the I2 value is reported for heterogeneity. We assessed all included articles for risk of bias and applied the novel GRADE framework for NMAs to rate the quality of evidence supporting each outcome. We included 132 RCTs comprising 11,161 patients with skeletal metastases from lung cancer. For OS, denosumab was ranked above zoledronic acid (ZA) and estimated to confer an average of 3.7 months (95%CI: −0.5 – 7.6) increased survival compared to untreated patients. For time to SRE, denosumab was ranked first with an average of 9.1 additional SRE-free months (95%CI: 4.0 – 14.0) compared to untreated patients, while ZA conferred an additional 4.8 SRE-free months (2.4 – 7.0). Patients treated with the combination of Ibandronate and
Aim. The duration of
Aim. Implant-associated osteomyelitis is a devastating complication with poor outcomes following treatment, especially when caused by antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). A large animal model of a two-stage revision to treat MRSA implant-associated osteomyelitis has been developed to assess novel treatments. A bioresorbable, thermo-responsive hyaluronan hydrogel (THH) loaded with antibiotics has been developed and our aim was to investigate it´s in vivo efficacy as a local antibiotic carrier compared to the current standard of care i.e. antibiotic-loaded polymethylmethacrylate (PMMA) bone cement. Method. 12 female, 2 to 4 year old, Swiss Alpine Sheep were inoculated with MRSA at the time of intramedullary nail insertion in the tibia to develop chronic osteomyelitis. After 8 weeks sheep received a 2-stage revision protocol, with local and systemic antibiotics. Group 1 received the gold standard clinical treatment: systemic vancomycin (2 weeks) followed by rifampicin plus trimethoprim/sulfamethoxazole (4 weeks), and local gentamicin/vancomycin via PMMA. Group 2 received local gentamicin/vancomycin delivered via THH at both revision surgeries and identical
The management of periprosthetic joint infection is challenging and the duration of