We have used in vivo microdialysis to monitor postoperative physiological events in the
Physical environments play important roles for maturation of mechanical functions of tissue. In this study, effects of relative tribological movement on the expression of tribological function of regenerated
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation,
In the context of regenerative medicine for the treatment of musculoskeletal pathologies mesenchymal stromal cells (MSCs) have shown good results thanks to secretion of therapeutic factors, both free and conveyed within the extracellular vesicles (EV), which in their totality constitute the “secretome”. The portfolio and biological activity of these molecules can be modulated by both in vitro and in vivo conditions, thus making the analysis of these activities very complex. A deep knowledge of the targets regulated by the secretome has become a matter of fundamental importance and a homogeneous and complete molecular characterization is still lacking in the field of applications for the musculoskeletal system. Therefore, the aim of this work was to characterize the secretome obtained from adipose-derived MSCs (ASCs), and its modulation after pre-conditioning of the ASCs. Pre-conditioning was done by culturing cells in the presence of i) high levels of IFNγ, as proposed for the production of clinical grade secretome with enhanced regenerative potential, ii) low levels of inflammatory stimuli, mimicking conditions found in the osteoarthritis (OA) synovial fluid. Furthermore, EVs ability to migrate within cartilage, chondrocyte and synoviocytes obtained from OA patients was evaluated. The data showed that more than 50 cytokines / chemokines and more than 200 EV-microRNAs are detectable at various intensity levels in ASCs secretomes. The majority of the most abundantly present molecules are involved in the remodelling of the extracellular matrix and in the homeostasis and chemotaxis of inflammatory cells including macrophages, which in OA are often characterized by an M1 inflammatory polarization, promoting their transition to an M2 anti-inflammatory phenotype. Inflammatory priming with IFNγ and synovial fluid-like conditions were able to further increase the ability of the secretome to interact with inflammatory cells and modulate their migration. Finally, the penetration of the EVs in the cartilage explants resulted a rapid process, which begins a few minutes after administration of the EVs that are able to reach a depth of 30-40 μm in 5 hours. The same capacity for interaction was also verified in chondrocytes and synoviocytes isolated from the cartilage and
Inflammatory changes in synovial tissues occur commonly in knee osteoarthritis (OA) and are termed “inflammatory OA”. The pathogenic significance of this inflammatory OA is uncertain. It is also not known whether inflammatory changes in the
1. Pain and pressure sensibility has been studied in the fibrous articular ligament and
Background. Tenosynovial giant cell tumour (TGCT) is a benign proliferative disease affecting
Articular invasion by malignant bone tumours around the knee is one of the most important criterions to determine prior surgery. MR imaging is the most accurate exam in staging bone sarcomas. Although, past studies showed that when MRI shows evidence of intra articular involvement by tumour, the incidence of false positive diagnosis and subsequent excessively radical surgery is as high as 50%. The aim of this study is to determine growth pattern of bone sarcomas into the joint in order to assess which are the limits of the joint compartment. We reviewed retrospectively 18 cases of primary intra medullary sarcomas with epiphyseal extension located around the knee. The tumour was located in the distal femur in 11 cases and in the proximal tibia in 7 cases. In tumours located in the distal femur, two distinct modes of extension towards synovium and joint space were identified. The most common pattern was tumour growth along the anterior and intra articular part of the distal femur. This pattern was observed in 10 cases. The tumour displaced anteriorly soft tissues and remained extra synovial in 6 cases. Only in 4 cases, tumour contaminated the joint space. The extension was in all cases marginally close to the cartilage of the trochlea in the transitional zone between cartilage and
Arthrofibrosis is a relatively frequent complication after total knee arthroplasty. Although stiffness after total hip arthroplasty (THA), because of formation of heterotopic ossification or other causes, is not uncommon, to the authors’ best knowledge, arthrofibrosis after THA has not been described. The aim of this study is to describe the arthrofibrosis of the hip after primary total hip arthroplasty using an established clinical and histological classification of arthrofibrosis. We retrospectively examined all patients who were histologically confirmed to have arthrofibrosis after primary THA during revision surgery by examination of tissue samples in our clinic. Arthrofibrosis was diagnosed according to the histopathological SLIM-consensus classification, which defines seven different SLIM types of the periimplant
Introduction. Metal on metal bearings are used especially in hip resurfacing. On the one hand, small bone preserving implants can be used. On the other hand recent studies found a variety of local and systemic side effects, for instance the appearance of pseudotumors, that are explained by pathologic biological reaction of the metal wear debris. The detailed mechanisms are still not understood until now. Thus it was the aim of this study to investigate the local reaction of metal wear particles and metal ions in a murine model. The hypothesis was that mainly metal ions provoke adverse histopathological reactions in vivo. Material and Methods. Three groups, each with 10 Balb / c mice were generated. Group A: injection of a 50 µl metal ion suspension at a concentration of 200 µg / l in the left knee. Group B: injection of a 50 µl 0,1 vol% metal particle suspension into the left knee joint. Group C (control group): injection of a 50 µl of 0,1 vol% PBS-suspension in the left knee. Incubation for 7 days, followed by euthanasia of the animals by intracardiac pentobarbital. The left and right knee, the lungs, kidneys, liver and spleen were removed. Histologic paraffin sections in 2 microns thickness were made, followed by HE (overview staining) and Movat (Pentachrom staining) staining. The histologic analysis was a done by a light microscopic evaluation of the subdivided visual fields at 200× magnification. Results. In the metal ions group compared with the control group an increasing thickness of
Aims. Chronic conditions of the wrist may be difficult to manage because
pain and psychiatric conditions are correlated with abnormal function
of the hand. Additionally, intra-articular inflammatory cytokines
may cause pain. We aimed to validate the measurement of inflammatory cytokines
in these conditions and identify features associated with symptoms. Patients and Methods. The study included 38 patients (18 men, 20 women, mean age 43
years) with a chronic condition of the wrist who underwent arthroscopy.
Before surgery, the Self-Rating Depression Scale (SDS), Hand20 questionnaire
and a visual analogue scale (VAS) for pain were used. Cytokine and
chemokine levels in the synovial fluid of the wrist were measured
using enzyme-linked immunosorbent assays and correlations between
the levels with pain were analysed. Gene expression profiles of
the
INTRODUCTION:. To avoid the early onset of osteoarthritis after partial meniscectomy an effective replacement of injured meniscal tissue would be desirable. The present study investigates the behaviour of a new silk derived scaffold supplied by Orthox Ltd. (Abingdon, UK) in an in vivo sheep model. METHODS:. The scaffolds where derived from silk fibres by processing into an open porous matrix. Nine sheep (4 ± 1 years) underwent partial meniscectomy at the anterior horn of the medial meniscus followed by implantation of a scaffold. The unoperated contralateral stifle joint served as control. After six months the animals were sacrificed and the joints inspected for inflammation. The Young's modulus of the tibial cartilage, meniscus and scaffold was determined by indentation or confined compression tests. All tissues were fixed in formaldehyde for histology. The data were analysed by a Wilcoxon and Mann-Whitney-U-test. RESULTS:. The sheep were free of lameness 4 days p.o. The macroscopic analysis of the genual region and of the
1. Rusty staining of the
INTRODUCTION:. One common surgical treatment of even early OA is the implantation of a Total Joint Arthroplasty. In case of younger patients this procedure is questionable. The present study investigates the behaviour of a new silk derived scaffold supplied by Orthox Ltd. (Abingdon, UK) in an in vivo sheep model. This scaffold allows replacing the damaged areas with a resurfacing technique and will avoid the implantation of a total joint in cases of early OA. METHODS:. The scaffolds where derived from silk fibres by processing into a composite of an open porous matrix in combination with a fibres mash with the same material and covered with a smooth surface. During the process the fluid silk can be casted in any shape. Eight sheep (4 ± 1 years) underwent a surgery where a large defect (2×1 cm) was created in the weight bearing zone of the medial condylus followed by implantation of a scaffold. The unoperated contra lateral stifle joint served as control. After six months the animals were sacrificed and the joints inspected for inflammation. The Young's modulus of the cartilage and scaffold was determined by indentation or confined compression tests. All tissues were fixed in formaldehyde for histology. The data were analysed by a Wilcoxon and Mann-Whitney-U-test. The roughness of the smooth surface was measured. Synovial fluid was harvested by punction before opening the joint and analysed for particle wear debris and for any signs of inflammation. RESULTS:. The sheep were free of lameness between the 2. nd. and latest the 4th days p.o. The macroscopic analysis of the genual region and the
Metallosis is a combined chemical and toxic reaction which, if the wear of a metal implant is large, may cause extensive reaction of
1. The
Purpose: The purpose of our tissue engineering work was to produce a substitute for the anterior cruciate ligament (ACL) in laboratory cultures for human implantation and to conduct fundamental studies on healing mechanisms. Material: We used cells isolated from ACL biopsies obtained from the host, type I bovine collagen, and two bone blocks to produce ACL in culture. Methods: Several layers of collagen containing host autologous ACL cells were superposed and linked to two bones that were placed on either side, according to a process currently being patented. The cells, or fibroblasts, enter into contact with the collagen matrix and start remodelling it, in the laboratory, before implantation. This ACL produced by tissue engineering can be ready for implantation 10–12 days after isolating the autologous cells from a ruptured ACL. Results: Implantation of autologous ACL reconstructs was successful in eight goats. Histological analysis of the implanted grafts showed permanent integration into the tissues after 1–13 months. Th
Aims. Early evidence has emerged suggesting that ceramic-on-ceramic
articulations induce a different tissue reaction to ceramic-on-polyethylene
and metal-on-metal bearings. Therefore, the aim of this study was
to investigate the tissue reaction and cellular response to ceramic
total hip arthroplasty (THA) materials in vitro,
as well as the tissue reaction in capsular tissue after revision
surgery of ceramic-on-ceramic THAs. Patients and Methods. We investigated tissue collected at revision surgery from nine
ceramic-on-ceramic articulations. we compared our findings with
tissue obtained from five metal-on-metal THA revisions, four ceramic-on-polyethylene
THAs, and four primary osteoarthritis
Previous study reported that intra-articular injection of MgSO4 could alleviate pain related behaviors in a collagenase induced OA model in rats. It provided us a good description on the potential of Mg2+ in OA treatment. However, the specific efficiency of Mg2+ on OA needs to be further explored and confirmed. The underlying mechanisms should be elucidated as well. Increasing attention has been paid on existence of synovial fluid MSCs (SF-MSCs) (not culture expanded) which may participate in endogenous reparative capabilities of the joint. On the other hand, previous studies demonstrated that Mg2+ not only promoted the expression of integrins but also enhanced the strength of fibronectin-integrin bonds that indicated the promotive effect of Mg2+ on cell adhesion, moreover, Mg2+ was proved could enhance chondrogenic differentiation of
Introduction. Osteoarthritis (OA) of the knee, a prevalently degenerative joint disorder provoked by articular cartilage loss, accounts for the leading cause of total knee arthroplasty. Autophagy is an indispensable intracellular event that maintains chondrocyte survival and metabolism. MicroRNAs are non-coding small RNAs participating in tissue morphogenesis, remodeling, and homeostasis. This study was undertaken to investigate the effect of microRNA-128 (miR-128) knockdown on the development of OA knees. Materials/Methods. Knee joints in rats were subjected to anterior cruciate ligament transection (ACLT) for inducing OA. Articular cartilage, synovium, and subchondral bone microarchitecture were assessed by OARSI scoring system, histomorphometry, and μCT imaging. Chondrocyte autophagy in terms of the expression of autophagic markers Atg4, Atg12, microtubule-associated protein 1 light chain 3 (LC3), and autophagosome formation was verified. Expression of microRNA, mRNA and signaling transduction were quantified with in situ hybridization, RT- quantitative PCR, and immunoblotting. Results. Chondrocytes in the affected knees showed weak expression of autophagic markers Atg4, Atg12, and LC3-II abundances in conjunction with significant increases in OARSI scores and a 2.5-fold elevation in miR-128 expression. The gain of miR-128 signaling in intact joints through intra-articular injection of miR-128 precursor resulted in 1.8–2.1-fold elevations in serum cartilage breakdown products CTX-II and COMP concentrations. miR-128 overexpression caused the joints to show evident chondrocyte apoptosis as evidenced by TUNEL staining concomitant with severe cartilage damage. Of note, antisense oligonucleotide knockdown of miR-128 (miR-128-AS) enabled the affected knee joints to show minor responses to the ACLT escalation of autophagy dysfunction in chondrocytes, cartilage breakdown histopathology, and OARSI scores. Administration with miR-128-AS also attenuated the ACLT-induced