Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1458 - 1463
1 Nov 2013
Won S Lee Y Ha Y Suh Y Koo K

Pre-operative planning for total hip replacement (THR) is challenging in hips with severe acetabular deformities, including those with a hypoplastic acetabulum or severe defects and in the presence of arthrodesis or ankylosis. We evaluated whether a Rapid Prototype (RP) model, which is a life-sized reproduction based on three-dimensional CT scans, can determine the feasibility of THR and provide information about the size and position of the acetabular component in severe acetabular deformities. THR was planned using an RP model in 21 complex hips in five men (five hips) and 16 women (16 hips) with a mean age of 47.7 years (24 to 70) at operation. An acetabular component was implanted successfully and THR completed in all hips. The acetabular component used was within 2 mm of the predicted size in 17 hips (80.9%). All of the acetabular components and femoral stems had radiological evidence of bone ingrowth and stability at the final follow-up, without any detectable wear or peri-prosthetic osteolysis. The RP model allowed a simulated procedure pre-operatively and was helpful in determining the feasibility of THR pre-operatively, and to decide on implant type, size and position in complex THRs.

Cite this article: Bone Joint J 2013;95-B:1458–63.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_11 | Pages 25 - 25
1 Jun 2016
Ferguson D Henckel J Holme T Berber R Matthews W Carrington R Miles J Mitchell P Jagiello J Skinner J Hart A
Full Access

Introduction. Surgical simulation and ‘virtual’ surgical tools are becoming recognised as essential aids for speciality training in Trauma & Orthopaedics, as evidenced by the BOA T&O Simulation Curriculum 2013. 1,2. The current generation of hip arthroplasty simulators, including cadaveric workshops, offers the trainee limited exposure to reproducible real life bony pathology. We developed and implemented a novel training course using pathological dry bone models generated from real patient cases to support senior orthopaedic trainees and new consultants in developing knowledge and hands on skills in complex total hip arthroplasty. Patient/Materials & Methods. A two-day programme for 20 delegates was held at a specialist centre for hip arthroplasty. Three complex femoral and three complex acetabular cases were identified from patients seen at our centre. 3D models were printed from CT scans and dry bone models produced (using a mold-casting process), enabling each delegate to have a copy of each case at a cost of around £30 per case per delegate (Figure 1). The faculty was led by 4 senior Consultant revision hip surgeons. A computerised digitising arm was used to measure cup positioning and femoral stem version giving candidates immediate objective feedback (Figure 2). Candidate experience and satisfaction with the course and models was evaluated with a standardised post-course questionnaire. Results. 91% of respondents rated overall course satisfaction good or very good with 100% stating learning objectives were met or exceeded. 100% of delegates rated the bone model workshop cases as good or very good for the acetabular course, and 88% for the femoral course. Discussion. This course has been shown to enhance learning of surgical techniques and skills in complex hip surgery. Conclusion. We have developed a novel, effective and low cost training simulation method using pathological dry bone models for complex and revision hip arthroplasty which could be developed for other anatomical areas


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 333 - 340
1 Mar 2009
Sariali E Mouttet A Pasquier G Durante E Catone Y

Pre-operative computerised three-dimensional planning was carried out in 223 patients undergoing total hip replacement with a cementless acetabular component and a cementless modular-neck femoral stem. Components were chosen which best restored leg length and femoral offset. The post-operative restoration of the anatomy was assessed by CT and compared with the pre-operative plan.

The component implanted was the same as that planned in 86% of the hips for the acetabular implant, 94% for the stem, and 93% for the neck-shaft angle. The rotational centre of the hip was restored with a mean accuracy of 0.73 mm (sd 3.5) craniocaudally and 1.2 mm (sd 2) laterally. Limb length was restored with a mean accuracy of 0.3 mm (sd 3.3) and femoral offset with a mean accuracy of 0.8 mm (sd 3.1).

This method appears to offer high accuracy in hip reconstruction as the difficulties likely to be encountered when restoring the anatomy can be anticipated and solved pre-operatively by optimising the selection of implants. Modularity of the femoral neck helped to restore the femoral offset and limb length.