Introduction and Objective. The rupture of the anterior cruciate ligament is a common sports injury and
Objectives. The need for bone tissue supplementation exists in a wide range
of clinical conditions involving
Summary. Our results prove that Demineralised Cortical Bone (DCB) can be used as biological tendon graft substitute, combined with correct surgical technique and the use of suture bone anchor early mobilisation can be achieved. Introduction. Surgical repair of tendon injuries aims to restore length, mechanical strength and function. In severe injuries with loss of tendon substance a tendon graft or a substitute is usually used to restore functional length. This is usually associated with donor site morbidity, host tissue reactions and lack of remodelling of the synthetic substitutes which may result in suboptimal outcome. In this study we hypothesise that DCB present in biological tendon environment with early mobilisation and appropriate tension will result in remodelling of the DCB into ligament tissue rather that ossification of the DCB at traditional expected. Our preparatory cadaveric study (abstract submitted to CORS 2013) showed that the repair model used in this animal study has sufficient mechanical strength needed for this animal study. Methods. 6 mature female sheep undergone surgical resection of the distal 1 cm of the right patellar tendon and osteotomy of patellar tendon attachment at the tibial tuberosity under general anaesthesia. Repair was done using DCB with 2 suture bone anchor. Animals were allowed immediate mobilisation after surgery and were sacrificed at 12 weeks. The force passing through the operated and non-operated legs was assessed preoperatively and at week 3, week 6, week 9 and week 12 bay walking the animals over a force plate. Radiographs were taken immediately after euthanasia, the Patella-Tendon-tibia constructs were retrieved and pQCT scan was done. Histological analysis included tenocytes and chondrocytes cell counts, semi-quantitative scoring of the neo-enthesis and polarised microscopy. Result. In this study, none of the retrieved specimens showed any evidence of ossification of the DCB as proved by the pQCT analysis. One animal failed to show satisfactory progress after week 3, X-rays showed patella alta, on specimen retrieval no damage to the DCB was found, sutures and stitches were intact and no evidence of anchor pullout was found. Force plate analysis of the other 5 animals showed satisfactory progression over time with 44% functional weight bearing at week 3 progressing to 79% at week 12. There was full range of movement of the stifle joint after 12 weeks. Histological analysis proved formation of neo-enthesis with evidence of cellulisation, vascularisation and remodelling of the collagen leading to ligamentisation of the DCB. Discussion.
Background. Following an anterior cruciate ligament (ACL) injury, the affected knee is known to experience bone loss and is at significant risk of becoming osteoporotic.
Regenerative medicine is an emerging field aimed at the repair and regeneration of various tissues. To this end, cytokines (CKs), growth factors (GFs), and stem/progenitor cells have been applied in this field. However, obtaining and preparing these candidates requires invasive, costly, and time-consuming procedures. We hypothesised that skeletal muscle could be a favorable candidate tissue for the concept of a point-of-care approach. The purpose of this study was to characterize and confirm the biological potential of skeletal muscle supernatant for use in regenerative medicine. Semitendinosus muscle was used after harvesting tendon from patients who underwent anterior cruciate ligament reconstructions. A total of 500 milligrams of stripped muscle was minced and mixed with 1 mL of saline. The collected supernatant was analysed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The biological effects of the supernatant on cell proliferation, osteogenesis, and angiogenesis in vitro were evaluated using human mesenchymal stem cells (hMSCs) and human umbilical cord vein endothelial cells (HUVECs).Objectives
Methods
This study compared the effect of a computer-assisted and a traditional surgical technique on the kinematics of the glenohumeral joint during passive abduction after hemiarthroplasty of the shoulder for the treatment of fractures. We used seven pairs of fresh-frozen cadaver shoulders to create simulated four-part fractures of the proximal humerus, which were then reconstructed with hemiarthroplasty and reattachment of the tuberosities. The specimens were randomised, so that one from each pair was repaired using the computer-assisted technique, whereas a traditional hemiarthroplasty without navigation was performed in the contralateral shoulder. Kinematic data were obtained using an electromagnetic tracking device. The traditional technique resulted in posterior and inferior translation of the humeral head. No statistical differences were observed before or after computer-assisted surgery. Although it requires further improvement, the computer-assisted approach appears to allow glenohumeral kinematics to more closely replicate those of the native joint, potentially improving the function of the shoulder and extending the longevity of the prosthesis.
We evaluated the possible induction of a systemic immune response to increase anti-tumour activity by the re-implantation of destructive tumour tissue treated by liquid nitrogen in a murine osteosarcoma (LM8) model. The tumours were randomised to treatment by excision alone or by cryotreatment after excision. Tissue from the tumour was frozen in liquid nitrogen, thawed in distilled water and then re-implanted in the same animal. In addition, some mice received an immunological response modifier of OK-432 after treatment. We measured the levels of interferon-gamma and interleukin-12 cytokines and the cytotoxicity activity of splenocytes against murine LM8 osteosarcoma cells. The number of lung and the size of abdominal metastases were also measured. Re-implantation of tumour tissue after cryotreatment activated immune responses and inhibited metastatic tumour growth. OK-432 synergistically enhanced the anti-tumour effect. Our results suggest that the treatment of malignant bone tumours by reconstruction using autografts containing tumours which have been treated by liquid nitrogen may be of clinical value.
The use of impaction bone grafting during revision arthroplasty of the hip in the presence of cortical defects has a high risk of post-operative fracture. Our laboratory study addressed the effect of extramedullary augmentation and length of femoral stem on the initial stability of the prosthesis and the risk of fracture. Cortical defects in plastic femora were repaired using either surgical mesh without extramedullary augmentation, mesh with a strut graft or mesh with a plate. After bone impaction, standard or long-stem Exeter prostheses were inserted, which were tested by cyclical loading while measuring defect strain and migration of the stem. Compared with standard stems without extramedullary augmentation, defect strains were 31% lower with longer stems, 43% lower with a plate and 50% lower with a strut graft. Combining extramedullary augmentation with a long stem showed little additional benefit (p = 0.67). The type of repair did not affect the initial stability. Our results support the use of impaction bone grafting and extramedullary augmentation of diaphyseal defects after mesh containment.