Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 139 - 139
1 Nov 2021
Müller M Thierbach M Aurich M Wildemann B
Full Access

Introduction and Objective. The rupture of the anterior cruciate ligament is a common sports injury and surgical reconstruction is often required to restore full function of the knee. Hamstring tendons are usually used as autografts. In addition to knee pain and stiffness, infections are feared complications after surgery. Incubation of the autograft in a vancomycin solution until implantation reduced the infection rate by about ten-fold. Recent studies showed no negative effect of vancomycin on the biomechanical properties of porcine tendons. A negative effect of high vancomycin concentrations on chondrocytes and osteoblast is reported, but the effect on tendon and tenocytes is not known. Materials and Methods. Rat Achilles tendons or isolated tenocytes were incubated with an increasing concentration of vancomycin (0 – 10 mg). Tendons were incubated for 0 – 40 minutes, while tenoyctes were incubated for 20 minutes followed by culturing for up to 7 days. Cell viability was assessed with PrestoBlue Assay and live/dead stain. The potential effect of vancomycin on the expression of tendon specific genes and extracellular matrix (ECM) genes was quantified. Possible structural changes of the tendon are analyzed. Results. Incubation of the tendons or tenocytes with 5 mg vancomycin for 20 minutes (clinical use) had no negative effects on the cell viability in the tendons or the isolated tenocytes, while incubation with the toxic control (ethanol) significantly reduced cell viability. Even twice the concentration and a longer incubation time had no negative effect on the cells in the tendons or the isolated cells. Vancyomycin did not affect the expression of Col1a1, Col3a1, and the tenocyte markers mohawk, scleraxis and tenomodulin. Conclusions. The results showed that clinical practice of wrapping the autograft in vancomycin did not impair the tenocyte viability. The expression of collagens and tenocyte markers was also not affected, neither in the incubated tendons nor in the isolated cells. This indicates that vancomycin had no effect on cell phenotype and the formation of the extracellular matrix, which, in addition to cell viability, is important for the performance of the autograft


Bone & Joint Research
Vol. 1, Issue 1 | Pages 1 - 7
1 Jan 2012
Rosenberg N Rosenberg O

Objectives. The need for bone tissue supplementation exists in a wide range of clinical conditions involving surgical reconstruction in limbs, the spine and skull. The bone supplementation materials currently used include autografts, allografts and inorganic matrix components; but these pose potentially serious side-effects. In particular the availability of the autografts is usually limited and their harvesting causes surgical morbidity. Therefore for the purpose of supplementation of autologous bone graft, we have developed a method for autologous extracorporeal bone generation. Methods. Human osteoblast-like cells were seeded on porous granules of tricalcium phosphate and incubated in osteogenic media while exposed to mechanical stimulation by vibration in the infrasonic range of frequencies. The generated tissue was examined microscopically following haematoxylin eosin, trichrome and immunohistochemical staining. Results. Following 14 days of incubation the generated tissue showed histological characteristics of bone-like material due to the characteristic eosinophilic staining, a positive staining for collagen trichrome and a positive specific staining for osteocalcin and collagen 1. Macroscopically, this tissue appeared in aggregates of between 0.5 cm and 2 cm. . Conclusions. We present evidence that the interaction of the cellular, inorganic and mechanical components in vitro can rapidly generate three-dimensional bone-like tissue that might be used as an autologous bone graft


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 9 | Pages 1285 - 1291
1 Sep 2005
Whiteside RA Jakob RP Wyss UP Mainil-Varlet P

Surgical reconstruction of articular surfaces by transplantation of osteochondral autografts has shown considerable promise in the treatment of focal articular lesions. During mosaicplasty, each cylindrical osteochondral graft is centred over the recipient hole and delivered by impacting the articular surface. Impact loading of articular cartilage has been associated with structural damage, loss of the viability of chondrocytes and subsequent degeneration of the articular cartilage. We have examined the relationship between single-impact loading and chondrocyte death for the specific confined-compression boundary conditions of mosaicplasty and the effect of repetitive impact loading which occurs during implantation of the graft on the resulting viability of the chondrocytes. Fresh bovine and porcine femoral condyles were used in this experiment. The percentage of chondrocyte death was found to vary logarithmically with single-impact energy and was predicted more strongly by the mean force of the impact rather than by the number of impacts required during placement of the graft. The significance of these results in regard to the surgical technique and design features of instruments for osteochondral transplantation is discussed


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 158 - 158
1 Jul 2014
Elnikety S Pendegrass C Holden C Blunn G
Full Access

Summary. Our results prove that Demineralised Cortical Bone (DCB) can be used as biological tendon graft substitute, combined with correct surgical technique and the use of suture bone anchor early mobilisation can be achieved. Introduction. Surgical repair of tendon injuries aims to restore length, mechanical strength and function. In severe injuries with loss of tendon substance a tendon graft or a substitute is usually used to restore functional length. This is usually associated with donor site morbidity, host tissue reactions and lack of remodelling of the synthetic substitutes which may result in suboptimal outcome. In this study we hypothesise that DCB present in biological tendon environment with early mobilisation and appropriate tension will result in remodelling of the DCB into ligament tissue rather that ossification of the DCB at traditional expected. Our preparatory cadaveric study (abstract submitted to CORS 2013) showed that the repair model used in this animal study has sufficient mechanical strength needed for this animal study. Methods. 6 mature female sheep undergone surgical resection of the distal 1 cm of the right patellar tendon and osteotomy of patellar tendon attachment at the tibial tuberosity under general anaesthesia. Repair was done using DCB with 2 suture bone anchor. Animals were allowed immediate mobilisation after surgery and were sacrificed at 12 weeks. The force passing through the operated and non-operated legs was assessed preoperatively and at week 3, week 6, week 9 and week 12 bay walking the animals over a force plate. Radiographs were taken immediately after euthanasia, the Patella-Tendon-tibia constructs were retrieved and pQCT scan was done. Histological analysis included tenocytes and chondrocytes cell counts, semi-quantitative scoring of the neo-enthesis and polarised microscopy. Result. In this study, none of the retrieved specimens showed any evidence of ossification of the DCB as proved by the pQCT analysis. One animal failed to show satisfactory progress after week 3, X-rays showed patella alta, on specimen retrieval no damage to the DCB was found, sutures and stitches were intact and no evidence of anchor pullout was found. Force plate analysis of the other 5 animals showed satisfactory progression over time with 44% functional weight bearing at week 3 progressing to 79% at week 12. There was full range of movement of the stifle joint after 12 weeks. Histological analysis proved formation of neo-enthesis with evidence of cellulisation, vascularisation and remodelling of the collagen leading to ligamentisation of the DCB. Discussion. Surgical reconstruction of damaged tendons is technically challenging, patellar tendon injuries presents even more challenging situation as it involves weight bearing joint. It is generally accepted that a period of immobilisation with passive range of movement exercises and protected weight bearing for up to 6 weeks post operatively is usually advised. Some surgeons use offloading metal wire to protect the repair for 6 weeks involving second surgical procedure to remove the wire. Demineralised bone is usually used in orthopaedics to utilise its osteogenic properties as bone graft substitute and to enhance osteogenesis in load bearing situations. In our study we explored a potential new use of the demineralised bone as tendon graft substitute, it acts as collagen scaffold allowing host cells to remodel its fibres into ligament like structure


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 31 - 31
1 May 2012
Findlay C Jameson S Marshall S Walker B Walker C Meek R Nicol A
Full Access

Background. Following an anterior cruciate ligament (ACL) injury, the affected knee is known to experience bone loss and is at significant risk of becoming osteoporotic. Surgical reconstruction is performed to attempt to restore the function of the knee and theoretically restore this bone density loss. Cross-sectional analysis of the proximal tibia using peripheral quantitative computed tomography (pQCT) enables localised analysis of bone mineral density (BMD) changes. The aim of this study was to establish the pattern of bone density changes in the tibia pre- and post- ACL reconstruction using pQCT image analysis. Methods. Eight patients who underwent ACL reconstruction were included. A cross sectional analysis of the proximal tibia was performed using a pQCT scanner pre-operatively and one to two years post-operatively on both the injured and contralateral (control) knee. The proximal two and three percent slices [S2 and S3] along the tibia were acquired. These were exported to Matlab(tm) and automated segmentation was performed to remove the tibia from its surrounding structures. Cross correlation was applied to co-register pairs of images and patterns of change in BMD were mapped using a t-test (p<0.05). Connected components of pixels with significant change in BMD were created and used to assess the impact of ACL injury & reconstruction on the proximal tibial BMD. Results. Prior to surgical ACL reconstruction, the BMD in the injured leg was significantly reduced relative to the control leg [S2: p=0.002, S3: p=0.002]. Post surgery, the proximal tibial BMD did not change in either leg [Control S2: p=0.102, S3: p=0.181; Injured S2: p=0.093, S3: p=0.439]. The post surgical images demonstrated patterns of increasing BMD surrounding the tunnel in the form of compact bone. Discussion. A significant reduction in proximal tibial BMD was observed in the ACL injured legs relative to control legs. The pattern of pre-operative bone loss was generally observed to be global across the entire slice. No change in BMD was observed following ACL reconstruction, in either injured or control leg. These results indicate that proximal tibial BMD is reduced and does not change after ACL reconstruction


Bone & Joint Research
Vol. 6, Issue 5 | Pages 277 - 283
1 May 2017
Yoshikawa M Nakasa T Ishikawa M Adachi N Ochi M

Objectives

Regenerative medicine is an emerging field aimed at the repair and regeneration of various tissues. To this end, cytokines (CKs), growth factors (GFs), and stem/progenitor cells have been applied in this field. However, obtaining and preparing these candidates requires invasive, costly, and time-consuming procedures. We hypothesised that skeletal muscle could be a favorable candidate tissue for the concept of a point-of-care approach. The purpose of this study was to characterize and confirm the biological potential of skeletal muscle supernatant for use in regenerative medicine.

Methods

Semitendinosus muscle was used after harvesting tendon from patients who underwent anterior cruciate ligament reconstructions. A total of 500 milligrams of stripped muscle was minced and mixed with 1 mL of saline. The collected supernatant was analysed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The biological effects of the supernatant on cell proliferation, osteogenesis, and angiogenesis in vitro were evaluated using human mesenchymal stem cells (hMSCs) and human umbilical cord vein endothelial cells (HUVECs).


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 9 | Pages 1256 - 1259
1 Sep 2008
Kedgley AE DeLude JA Drosdowech DS Johnson JA Bicknell RT

This study compared the effect of a computer-assisted and a traditional surgical technique on the kinematics of the glenohumeral joint during passive abduction after hemiarthroplasty of the shoulder for the treatment of fractures. We used seven pairs of fresh-frozen cadaver shoulders to create simulated four-part fractures of the proximal humerus, which were then reconstructed with hemiarthroplasty and reattachment of the tuberosities. The specimens were randomised, so that one from each pair was repaired using the computer-assisted technique, whereas a traditional hemiarthroplasty without navigation was performed in the contralateral shoulder. Kinematic data were obtained using an electromagnetic tracking device.

The traditional technique resulted in posterior and inferior translation of the humeral head. No statistical differences were observed before or after computer-assisted surgery.

Although it requires further improvement, the computer-assisted approach appears to allow glenohumeral kinematics to more closely replicate those of the native joint, potentially improving the function of the shoulder and extending the longevity of the prosthesis.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 9 | Pages 1249 - 1255
1 Sep 2008
Nishida H Tsuchiya H Tomita K

We evaluated the possible induction of a systemic immune response to increase anti-tumour activity by the re-implantation of destructive tumour tissue treated by liquid nitrogen in a murine osteosarcoma (LM8) model. The tumours were randomised to treatment by excision alone or by cryotreatment after excision. Tissue from the tumour was frozen in liquid nitrogen, thawed in distilled water and then re-implanted in the same animal. In addition, some mice received an immunological response modifier of OK-432 after treatment. We measured the levels of interferon-gamma and interleukin-12 cytokines and the cytotoxicity activity of splenocytes against murine LM8 osteosarcoma cells. The number of lung and the size of abdominal metastases were also measured.

Re-implantation of tumour tissue after cryotreatment activated immune responses and inhibited metastatic tumour growth. OK-432 synergistically enhanced the anti-tumour effect. Our results suggest that the treatment of malignant bone tumours by reconstruction using autografts containing tumours which have been treated by liquid nitrogen may be of clinical value.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 6 | Pages 832 - 836
1 Jun 2006
Barker R Takahashi T Toms A Gregson P Kuiper JH

The use of impaction bone grafting during revision arthroplasty of the hip in the presence of cortical defects has a high risk of post-operative fracture. Our laboratory study addressed the effect of extramedullary augmentation and length of femoral stem on the initial stability of the prosthesis and the risk of fracture.

Cortical defects in plastic femora were repaired using either surgical mesh without extramedullary augmentation, mesh with a strut graft or mesh with a plate. After bone impaction, standard or long-stem Exeter prostheses were inserted, which were tested by cyclical loading while measuring defect strain and migration of the stem.

Compared with standard stems without extramedullary augmentation, defect strains were 31% lower with longer stems, 43% lower with a plate and 50% lower with a strut graft. Combining extramedullary augmentation with a long stem showed little additional benefit (p = 0.67). The type of repair did not affect the initial stability. Our results support the use of impaction bone grafting and extramedullary augmentation of diaphyseal defects after mesh containment.