Advertisement for orthosearch.org.uk
Results 1 - 11 of 11
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 90 - 90
1 Dec 2020
Gori M Giannitelli SM Papalia R Vadalà G Denaro V
Full Access

Invasive intraneural electrodes implanted in peripheral nerves are neural prosthetic devices that are exploied to control advanced neural-interfaced prostheses in human amputees. One of the main issues to be faced in chronic implants is represented by the gradual loss of functionality of such intraneural interfaces due to an electrical impedance increase caused by the progressive formation of a fibrotic capsule around the electrodes, which is originally due to a nonspecific inflammatory response called foreign body reaction (FBR).

In this in vitro work, we tested the biocompatibility and ultra-low fouling features of the synthetic coating - poly(ethylene glycol) (PEG) - compared to the organic polymer - zwitterionic sulfated poly(sulfobetaine methacrylate) (SBMA) hydrogel - to prevent or reduce the first steps of the FBR: plasma protein adsorption and cell adhesion to the interface.

Synthesis and characterization of the SBMA hydrogel was done. Preliminary biocompatibility analysis of the zwitterionic hydrogel, using hydrogel-conditioned medium, showed no cytotoxicity at all vs. control. We seeded GFP-labelled human myofibroblasts on PEG- and SBMA hydrogel-coated polyimide surfaces and evaluated their adhesion and cell viability at different time-points. Because of the high hydration, low stiffness reflecting the one of neural tissue, and ultra-low fouling characteristics of the SBMA hydrogel, this polymer showed lower myofibroblast adhesion and different cell morphology compared to adhesion controls, thereby representing a better coating than PEG for potentially mitigating the FBR.

We conclude that soft SBMA hydrogels could outperform PEG coatings in vitro as more suitable dressings of intraneural electrodes. Furthermore, such SBMA-based antifouling materials can be envisioned as long-term diffusion-based delivery systems for controlled release of anti-inflammatory and anti-fibrotic drugs in vivo.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 2 - 2
1 Dec 2022
Pitton M Pellegatta D Vandoni D Graziani G Farè S
Full Access

The in vitro mimicking of bone microenvironment for the study of pathologies is a challenging field that requires the design of scaffolds with suitable morphological, structural and cytocompatible properties. During last years, 3D in vitro tumour models have been developed to reproduce mechanical, biochemical and structural bone microenvironment elements, allowing cells to behave as in vivo. In this work, gas foamed polyether urethane foams (PUF) and 3D printed thermoplastic polyether urethane (3DP-PU) designed with different patterns are proposed as scaffolds for in vitro model of bone tissue. Surface coatings for a biomimetic behaviour of the 3D scaffold models were also investigated. Morphological, chemico-physical, mechanical properties, and biological in vitro behaviour were investigated. PUFs for metastases investigation. The suitability of PUF as 3D in vitro model to study the interactions between bone tumour initiating cells and the bone microenvironment was investigated. PUF open porosity (>70%) appeared suitable to mimic trabecular bone structure. Human adipose derived stem cells (ADSC) were cultured and differentiated into osteoblast lineage on the PU foam, as confirmed by Alizarin Red staining and RT-PCR, thus offering a bone biomimetic microenvironment to the further co-culture with bone derived tumour-initiating cells (MCFS). Tumour aggregates were observed after three weeks of co-culture by e-cadherin staining and SEM; modification in CaP distribution was identified by SEM-EDX and associated to the presence of tumour cells. 3DP-PU as tumour bone model. 3D printed scaffolds have pores with a precise and regular geometry (0°-90°, 0°-45°-90°-135°, 0°-60°-120°). PU scaffold porosity evidenced values from 55 to 67%, values that belong to the porosity range of the trabecular bone tissue (30-90%). The compressive modulus varied between 2 and 4 MPa, depending on the printed pattern. Biomimetic nanostructured coating was performed on 0-90° 3DP-PU by Ionized Jet Deposition. Coatings had a submicrometric thickness, variable tuning deposition time, nanostructured surface morphology and biomimetic composition. Coating on 3DP-PU promoted cells colonization of the whole porous scaffolds, compared to the controls, where cells concentrated mostly on the outer layers. In conclusion, based on the obtained results, scaffolds with different geometries have been successfully produced. Morphological and structural properties of the scaffolds here presented are suitable for mimicking the bone tissue, in order to produce a 3D in vitro model useful for bone pathologies research


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 31 - 31
11 Apr 2023
Powell D Wu B Dietz P Bou-Akl T Ren W Markel D
Full Access

Failure of osseointegration and periprosthetic joint infection (PJI) are the two main reasons of implant failure after total joint replacement (TJR). Nanofiber (NF) implant surface coating represents an alternative local drug eluting device that improves osseointegration and decreases the risk of PJI. The purpose of this study was to investigate the therapeutic efficacies of erythromycin (EM)-loaded coaxial PLGA/PCL-PVA NF coating in a rat S. aureus-infected tibia model. NF coatings with 100mg and 1000mg EM were prepared. NF without EM was included as positive control. 56 Sprague Dawley rats were divided into 4 groups. A titanium pin (1.0-mm x 8 mm) was placed into the tibia through the intercondylar notch. S. aureus (SA) was introduced by both direct injection of 10 μl broth (1 × 10. 4. CFU) into the medullary cavity and single dip of Ti pins into a similar solution prior to insertion. Rats were sacrificed at 8 and 16 weeks after surgery. The outcome measurements include μCT based quantitative osteolysis evaluation and hard tissue histology. Results: EM-NF coating (EM100 and EM1000) reduced osteolysis at 8 and 16 weeks, compared to EM0 and negative control. The effective infection control by EM-NFs was further confirmed by hard tissue section analysis. The Bone implant contact (BIC) and bone area fraction Occupancy (BAFO) within 200 µm of the surface of the pins were used to evaluate the osseointegration and new bone formation around the implants. At 16 weeks, the bone implant contact (BIC) of EM 100 (35.08%) was higher than that of negative control (3.43%) and EM0 (0%). The bone area fraction occupancy within 200 µm (BAFO) of EM100 (0.63 mm2) was higher than that of negative control (0.390 mm2) and EM0 (0.0 mm. 2. ). The BAFO of EM100 was also higher than that of EM1000 (0.3mm. 2. ). There was much less osteolysis observed with EM100 and EM1000 NF coatings at 16 weeks, as compared to EM0 positive control, p=0.08 and p=0.1, respectively. Osseointegration and periprosthetic bone formation was enhanced by EM-NFs, especially EM100. Data from this pilot study is promising for improving implant surface fabrication strategies


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 69 - 69
1 Dec 2021
MacLeod A Taylor R Casonato A Gill H
Full Access

Abstract. Objectives. Additive manufacturing has led to numerous innovations in orthopaedic surgery: surgical guides; surface coatings/textures; and custom implants. Most contemporary implants are made from titanium alloy (Ti-6Al-4V). Despite being widely available industrially and clinically, there is little published information on the performance of this 3D printed material for orthopaedic devices with respect to regulatory approval. The aim of this study was to document the mechanical, chemical and biological properties of selective laser sintering (SLS) manufactured specimens following medical device (TOKA®, 3D Metal Printing LTD, UK) submission and review by the UK Medicines and Healthcare Products Regulatory Agency (MHRA). Methods. All specimens were additively manufactured in Ti-6Al-4V ELI (Renishaw plc, UK). Mechanical tests were performed according to ISO6892-1, ISO9585 and ISO12107 for tensile (n=10), bending (n=3) and fatigue (n=16) respectively (University of Bath, UK). Appropriate chemical characterisation and biological tests were selected according to recommendations in ISO10993 and conducted by external laboratories (Wickham Labs, UK; Lucideon, UK; Edwards Analytical, UK) in adherence with Good Lab Practise guidelines. A toxicological review was conducted on the findings (Bibra, UK). Results. The mechanical tests demonstrated that the material performed to the specification for conventionally manufactured titanium alloy of this type (ISO5832-3). The toxicology review concluded that there were no significant concerns for the health of the patients identified in this evaluation and implantation of the TOKA® device would not result in a significant health risk to patients. Conclusions. Reflecting on our MHRA experience, additive manufacture of orthopaedic devices is still considered to be a ‘novel’ process by regulatory bodies, requiring additional safety evidence. Despite this, our findings demonstrate that there is no difference, mechanically or chemically, to the traditionally manufactured alloy material. We hope to support the widening use of 3D printed titanium alloy orthopaedic devices by publishing our route to regulatory approval. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 74 - 74
1 Dec 2020
Köse N Bayrak ÇH Köse AA Sevencan A Toktaş AG Doğan A
Full Access

Orthopaedic and trauma implant related infection remains one of the major complications that negatively impact clinical outcome and significantly increase healthcare expenditure. Hydroxyapatite has been used for many years to increase implant osseointegration. Silver has been introduced into hydroxyapatite as an antimicrobial coating for orthopedic implants. This surface coatings can both increase tissue compatibility and prevent implant-related infections. We examined infection markers and blood silver values, liver and kidney function tests of 30 patients with of three groups of orthopedic implants, external fixators, intramedullary nails and hip replacements, coated with Ag + ion doped CaP based ceramic powder to determine safety and effectiveness of this dual-function coating. During 1 year follow-up, the pin sites were observed at the external fixator group, and wound areas for the proximal femoral nail and hip arthroplasty group at regular intervals. In addition, liver and kidney function tests, infection markers and blood silver values were checked in patients. In the external fixator group, only 4 out of 91 pin sites (%4.39) were infected. The wound areas healed without any problem in patients with proximal femoral nails and hip arthroplasty. There was no side effect suggesting silver toxicity such as systemic toxic side effect or argyria in any patient and blood silver level did not increase. Compared to similar patient groups in the literature, much lower infection rates were obtained (p = 0.001), and implant osseointegration was good. In patients with chronic infection, the implants were applied acutely after removing the primary implant and with simple debridement. Unlike other silver coating methods, silver was trapped in hydroxyapatite crystals in the ionic form, which is released from the coating during the process of osseointegration, thus, the silver was released into the systemic circulation gradually that showed antibacterial activity locally. We conclude that the use of orthopedic implants with a silver ion added calcium phosphate-based special coating is a safe method to prevent the implant-related infection. This work was supported by TUBİTAK Project Number 315S101


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 42 - 42
1 Jan 2019
Lal S Hall R Tipper JL
Full Access

Since 2010, there has been a sharp decline in the use of metal-on-metal joint replacement devices due to adverse responses associated with the release of metal wear particles and ions in patients. Surface engineered coatings offer an innovative solution to this problem by covering metal implant surfaces with biocompatible and wear resistant materials. The present study tests the hypothesis whether surface engineered coatings can reduce the overall biological impact of a device by investigating recently introduced silicon nitride coatings for joint replacements. Biological responses of peripheral blood mononuclear cells (PBMNCs) to Si3N4 model particles, SiNx coating wear particles and CoCr wear particles were evaluated by testing cytotoxicity, inflammatory cytokine release, oxidative stress and genotoxicity. Clinically relevant wear particles were generated from SiNx-on-SiNx and CoCr-on-CoCr bearing combinations using a multidirectional pin-on-plate tribometer. All particles were heat treated at 180°C for 4 h to destroy endotoxin contamination. Whole peripheral blood was collected from healthy donors (ethics approval BIOSCI 10–108, University of Leeds). The PBMNCs were isolated using Lymphoprep (Stemcell) and incubated with particles at various volumetric concentrations (0.5 to 100 µm3 particles/cell) for 24 h in 5% (v/v) CO2 at 37°C. After incubation, cell viability was measured using the ATPlite assay (Perkin Elmer); TNF-alpha release was measured by ELISA (Invitrogen); oxidative stress was measured using H2DCFDA (Abcam); and DNA damage was measured by comet assay (Tevigen). The results were expressed as mean ± 95% confidence limits and the data was analysed using one-way ANOVA and Tukey-Kramer post-hoc analysis. No evidence of cytotoxicity, oxidative stress, TNF-alpha release, or DNA damage was observed for the silicon nitride particles at any of the doses. However, CoCr wear particles caused cytotoxicity, oxidative stress, TNF-alpha release and DNA damage in PBMNCs at high doses (50 µm3 particles per cell). This study has demonstrated the in-vitro biocompatibility of SiNx coatings with primary human monocytic cells. Therefore, surface engineered coatings have potential to significantly reduce the biological impact of metal components in future orthopaedic devices


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 132 - 132
2 Jan 2024
Rau J
Full Access

Over the last decades, biodegradable metals emerged as promising materials for various biomedical implant applications, aiming to reduce the use of permanent metallic implants and, therefore, to avoid additional surgeries for implant removal. However, among the important issue to be solved is their fast corrosion - too high to match the healing rate of the bone tissue. The most effective way to improve this characteristic is to coat biodegradable metals with substituted calcium phosphates. Tricalcium phosphate (β-TCP) is a resorbable bioceramic widely used as synthetic bone graft. In order to modulate and enhance its biological performance, the substitution of Ca2+ by various metal ions, such as strontium (Sr2+), magnesium (Mg2+), iron (Fe2+) etc., can be carried out. Among them, copper (Cu2+), manganese (Mn2+), zinc (Zn2+) etc. could add antimicrobial properties against implant-related infections. Double substitutions of TCP containing couples of Cu2+/Sr2+ or Mn2+/Sr2+ ions are considered to be the most perspective based on the results of our study. We established that single phase Ca3−2x(MˊMˊˊ)x(PO4)2 solid solutions are formed only at x ≤ 0.286, where Mˊ and Mˊˊ—divalent metal ions, such as Zn2+, Mg2+, Cu2+, Mn2+, and that in case of double substitutions, the incorporation of Sr2+ ions allows one to extend the limit of solid solution due to the enlargement of the unit cell structure. We also reported that antimicrobial properties depend on the substitution ion occupation of Ca2+ crystal sites in the β-TCP structure. The combination of two different ions in the Ca5 position, on one side, and in the Ca1, Ca2, Ca3, and Ca4 positions, on another side, significantly boosts antimicrobial properties. In the present work, zinc-lithium (Zn-Li) biodegradable alloys were coated with double substituted Mn2+/Sr2+ β-TCP and double substituted Cu2+/ Sr2+ β-TCP, with the scope to promote osteoinductive effect (due to the Sr2+ presence) and to impart antimicrobial properties (thanks to Cu2+ or Mn2+ ions). The Pulsed Laser Deposition (PLD) method was applied as the coating's preparation technique. It was shown that films deposited using PLD present good adhesion strength and hardness and are characterized by a nanostructured background with random microparticles on the surface. For coatings characterization, Fourier Transform Infrared Spectroscopy, X-ray Diffraction, and Scanning Electron Microscopy coupled with Energy Dispersive X-ray and X-ray Photoelectron Spectroscopy were applied. The microbiology tests on the prepared coated Zn-Li alloys were performed with the Gram-positive (Staphylococcus aureus, Enterococcus faecalis) and Gram-negative (Salmonella typhimurium, Escherichia coli) bacteria strains and Candida albicans fungus. The antimicrobial activity tests showed that Mn2+/Sr2+ β-TCP -coated and Cu2+/Sr2+ β-TCP coated Zn-Li alloys were able to inhibit the growth of all five microorganisms. The prepared coatings are promising in improving the degradation behavior and biological properties of Zn-Li alloys, and further studies are necessary before a possible clinical translation


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 16 - 16
1 Dec 2020
Kontakis MG Schou J Hailer N
Full Access

Bone tissue engineering attempts at substituting critical size bone defects with scaffolds that can be primed with osteogenic cells, usually mesenchymal stem cells (MSC) from the bone marrow. Although overlooked, peripheral blood is a valuable source of MSC and circulating osteoprogenitors (COP), bearing a significant regenerative potential, and peripheral blood is easier to access than bone marrow. We thus studied osteodifferentiation of peripheral blood mononuclear cells (pbMNC) under different culture conditions, and how they compared to primary human osteoblasts. pbMNC were isolated from healthy adult volunteers by Ficoll density gradient centrifugation, and they were then cultured using media supplemented with 100nM Dexamethasone, 10mM sodium β-glycero phosphate and ascorbic acid (either 40mM or 0.05mM). For comparison, primary osteoblasts were isolated from the femoral heads of patients undergoing hip arthroplasty. After 4 weeks of culture, osteogenic activation was quantified with spectrometric measurement of alkalic phosphatase (ALP) and lactate dehydrogenase (LDH) levels. The extent of osteoid mineralization was measured with Alizarin red staining. We studied the effects of 1) varying cell concentration at seeding, 2) surface coating of culture wells with collagen and 3) high compared to low ascorbic acid (40mM and 0.05mM) media. Higher numbers of pbMNC (0.5–5.9 versus 0.062–0.25 million cells per well) at seeding resulted in a lower ALP/LDH-ratio (mean ± standard deviation), 0.39 ± 0.33 arbitrary units (AU) versus 1.36 ± 1.06 AU, but led to higher amount of osteoid production, 0.10 ± 0.06 versus 0.065 ± 0.02 AU, p < 0.05. Culture of pbMNC on collagen did not confer any difference in ALP/LDH-ratios, with 0.43 ± 0.3 AU for collagen-coated and 0.43 ± 0.41 AU for uncoated wells (p = 0.95), and we also observed no relevant difference in osteoid production (0.07 ± 0.01 AU for collagen-coated versus 0.1 ± 0.08 AU for uncoated wells, p = 0.28). Cultures of pbMNC on collagen in media supplemented with a higher concentration of ascorbic acid showed a 130% higher ALP/LDH-ratio when compared to cultures exposed to a lower ascorbic acid concentration (p < 0.05). Cultures with a low initial concentration of pbMNC (0.5 − 1 million cells) had no significantly different ALP/LDH-ratio when compared to primary human osteoblasts, but the cultures of pbMNC resulted in a 90% increase in osteoid mineralization when compared to primary human osteoblasts (p < 0.05). These findings indicate that progenitor cells derived from peripheral blood have a significant osteogenic potential, rendering them interesting candidates for seeding of scaffolds intended to fill critical sized bone defects. pbMNC produced almost double the amount of osteoid as primary osteoblasts. The isolation of pbMSC and COP is non-invasive and easy, and they might be seeded directly onto scaffolds without prior ex-vivo expansion, a question that we intend to pursue further


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 102 - 102
1 Apr 2017
Descamps S Villatte G Massard C Forrestier C Awitor K
Full Access

Background. External fixation is a method of osteosynthesis currently required in traumatology and orthopaedic surgery. Pin tract infection is a common problem in clinical practice. Infection occurs after a bacterial colonisation of the pin due to its contact with skin and local environment. To prevent such local contamination, one way to handle this issue is to create a specific coating using method which could be applied in the medical field. In this work we develop a surface coating for external fixator pins based on photocatalytic TiOα properties, producing a bactericidal effect with sufficient mechanical strength to be compatible with surgical use. Method. The morphology and structure of the sol-gel coating layers were characterised using, respectively, scanning electron microscopy and X-ray diffraction. Resistance properties of the coating were investigated by mechanical testing. Photo-degradation of acid orange 7 in aqueous solution was used as a probe, to assess the photo-catalytic activity of titanium dioxide layers under UV irradiation. The bactericidal effect induced by the process was evaluated against 2 strains: a Staphylococcus aureus and a multiresistant Staphylococcus epidermidis. Results. The coated pins showed good mechanical strength and efficient antibacterial effect after 1 hour of UV irradiation. Conclusion. Our study allowed to develop an antibacterial coating for stainless steel commonly used in surgical practice. The process using photoactive TiO2 exposed to UV irradiation is actually well known and applied in many disinfection fields, and exhibited efficiency against the two main bactericidal strains involved in pin tract infections. Mechanical tests confirmed the coating's ability to resist to important stresses. Moreover, this kind of coating created by sol-gel dip-coating techniques is not expensive and quite easy to do. As a consequence, we can hope that this new option would treat preventively pin tract infection, even if there is an important optimisation task to be done in order to amplify bactericidal properties. Level of evidence. II


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 59 - 59
1 Aug 2012
Bone M Cunningham J Field J Joyce T
Full Access

Finger arthroplasty lacks the success seen with hip and knee joint replacements. The Van Straten Leuwen Poeschmann Metal (LPM) prosthesis was intended for the proximal interphalangeal (PIP) joints. However revision rates of 30% after 19 months were reported alongside massive osteolysis. Three failed LPM titanium niobium (TiNb) coated cobalt chrome (CoCr) components were obtained- two distal and one proximal. All three components were analysed using an environmental scanning electron microscope (ESEM). This gave the chemical composition of the surface to determine if the TiNb surface coating was still intact. The distal components were analysed using a ZYGO non-contact profilometer (1nm resolution) with the proximal component unable to be analysed due to its shape. ZYGO analysis gave the roughness average (Ra) of the surface and determined the presence of scratches, pitting and other damage. Images obtained from both the ZYGO and the ESEM indicated that the surfaces of all components were heavily worn. On the articulating surfaces of both distal components unidirectional scratching was dominant, while the non-articulating surface showed multidirectional scratching. The presence of unidirectional scratching suggested two-body wear, whilst the multidirectional scratching on the non-articulating surface of the distal component suggested that trapped debris may have caused three-body wear. The ESEM chemical analysis showed that in some regions on the distal component the TiNb coating had been removed completely and in other areas it had been scratched or penetrated. On the proximal component the TiNb coating had been almost completely removed from the articulating surfaces and was only present in small amounts on the non-articulating surfaces. There was little evidence of bone attachment to the titanium coating which was intended to help provide fixation. ESEM images showed the coating had been removed in some sections where there was minimal scratching, suggesting this scratching did not impact significantly in the coating removal. Therefore here the main cause of coating removal may have been corrosion, although scratching may have also have played a part. The osteolysis reported clinically may have been linked to the wear debris from the failed coating


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 90 - 90
1 Jan 2017
Gallazzi E Bortolin M Romanò D Drago L Romanò C
Full Access

Development of antibacterial surfaces or coatings to prevent bacterial adhesion and hence colonization of implants and biofilm formation is an attractive option, in order to reduce the tremendous impact of implant-related infections associated with modern surgery. To overcome the lack of in vivo and clinical models, able to evaluate the performance of anti-adhesive coatings, we designed an in vitro experimental setting that allows to quantitatively evaluate the ability of a coating to reduce bacterial adhesion on a given surface; this model may efficiently serve as a surrogate endpoint to validate anti-adhesive medical devices and compounds. Here we report the results the evaluation of the anti-adhesive properties of a patented, fast-resorbable hydrogel coating, (“Defensive Antibacterial Coating”, DAC). Sterile sandblasted titanium discs of approximately 5cm. 2. surface area were used as substrates for bacterial adhesion. The gel was prepared as follows: syringes prefilled with 300 mg of DAC powder (Novagenit Srl) were reconstituted with 5 ml of sterile water to obtain a hydrogel with a DAC concentration of 6%. Two experiments were conducted. In the first, 200 mg of hydrogel were homogenously spread on the surface of titanium disc, with the spreading device provided by the manufacturer. Both coated and uncoated substrates (controls) were overlaid with a standardized inoculum (10. 8. CFU/ml) of a wild methicillin-resistant Staphylococcus aureus strain, previously isolated from a peri-prosthetic joint infection, for 15, 30, 60 and 120 minutes. Afterwards, non-adherent bacteria were removed by rinsing with sterile saline. The remaining adhered cells were seeded on agar plates for CFU count. In the second experiment, the discs were first inoculated with bacterial cells followed by a treatment with the hydrogel and bacterial count as described above. Ten discs were used for each condition and each time interval (total 160 discs). The adhesion density of S. aureus on titanium discs pre-treated with DAC was significantly lower than that observed on untreated controls at each time point. In particular, the average number of adherent bacteria at 15, 30, 60 and 120 minutes of incubation, was respectively reduced by 86.8%, 80.4%, 74.6% and 66.7%, compared to controls (p<0.001). DAC treatment of discs with previously adhered S. aureus reduced bacterial adhesion, at 15, 30, 60 and 120 minutes of incubation, by, respectively, 84.0% (p<0.05), 72.8%, 72.3% and 64.3% (p<0.001), compared to untreated controls. Our results shows that DAC, “Defensive Antibacterial Coating”, has anti-adhesive properties that allow to reduce bacterial adhesion on a sanded titanium surface by more than 80%, even in the presence of remarkably high bacterial loads (10. 8. CFU/ml), of multi-resistant bacteria (MRSA) and even in the case of previous contamination. Providing anti-adhesive properties to a surface with a fast-resorbable coating may be a safe option to protect inorganic and organic surfaces and biomaterials. Those observation could be the pre-requisite for its in vivo application