Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 83 - 83
23 Feb 2023
Rossignol SL Boekel P Grant A Doma K Morse L
Full Access

Currently, the consensus regarding subscapularis tendon repair during a reverse total shoulder arthroplasty (rTSA) is to do so if it is possible. Repair is thought to decrease the risk of dislocation and improve internal rotation but may also increase stiffness and improvement in internal rotation may be of subclinical benefit. Aim is to retrospectively evaluate the outcomes of rTSA, with or without a subscapularis tendon repair. We completed a retrospective review of 51 participants (25 without and 26 with subscapularis repair) who received rTSR by a single-surgeon using a single-implant. Three patient reported outcome measures (PROM) were assessed pre-operatively and post-operative at twelve months, as well as range of movement (ROM) and plain radiographs. Statistical analysis utilized unpaired t tests for parametric variables and Mann-Whitney U test for nonparametric variables. External Rotation ROM pre-operatively was the only variable with a significance difference (p=0.02) with the subscapularis tendon repaired group having a greater range. Pre- and post-operative abduction (p=0.72 & 0.58), forward flexion (p=0.67 & 0.34), ASES (p=0.0.06 & 0.78), Oxford (p=0.0.27 & 0.73) and post-operative external rotation (p=0.17). Greater external rotation ROM pre-operatively may be indicative of the ability to repair the subscapularis tendon intra-operatively. However, repair does not seem to improve clinical outcome at 12 months. There was no difference of the PROMs and AROMs between the subscapularis repaired and not repaired groups for any of the variables at the pre-operative or 12 month post operative with the exception of the external rotation ROM pre-operatively. We can conclude that from PROM or AROM perspective there is no difference if the tendon is repaired or not in a rTSR and indeed the patients without the repair may have improved outcomes at 12 months


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 19 - 19
1 Apr 2018
Park J Sharma N Rhee S Oh J
Full Access

Introduction & Background. Clinical outcome after reverse total shoulder arthroplasty (RTSA) can be influenced by technical and implant-related factors, so the purpose of this study was to investigate whether individualizing humeral retroversion and subscapularis repair affect the clinical outcomes after RTSA. Material & Method. Authors retrospectively analyzed the prospectively collected data from 80 patients who underwent RTSA from January 2007 to January 2015 using same implant (Biomet Comprehensive. ®. Reverse Shoulder System, Warsaw, Indiana). The mean follow up was 23.3 ± 1.7 (range, 12 ∼ 70) months. The retroversion of humeral component was decided according to native version estimated using shoulder CT in Group I (n=52), and fixed in 20° retroversion in Group II (n=28). Group I was subdivided into Group Ia (n=21, mean 19.3°), less than 20° of retroversion, and Group Ib (n=31, mean 31.9°), more than 20°. Intraoperative tenotomized subscapularis was repaired in 40 patients in Group I, and could not be repaired due to massive tear including subscapularis in remaining 12 patients. Clinical outcomes were evaluated with range of motion (ROM) and several clinical outcome scores. Results. Group I showed significantly better ROM and clinical scores compared to Group II at the final follow up (all p < 0.05). There were no significant differences in ROM and clinical scores between Group Ia and Ib. Group Ia showed better ROM and pain VAS than Group II (all p < 0.05), and Group Ib also demonstrated significantly better ROM and clinical outcome scores than Group II (all p < 0.05). With respect to subscapularis repair, there were no differences in ROM and clinical scores between two groups. No complications such as infection or dislocation were detected according to subscapularis repair. Conclusion. Individualizing humeral retroversion can obtain superior clinical outcomes than fixed 20° retroversion. Subscapularis repair would not be essential for the better clinical outcome in patients with the lateralized RTSA


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 17 - 17
1 May 2019
Jobin C
Full Access

Reverse shoulder arthroplasty is becoming a frequent treatment of choice for patients with shoulder disorders. Complication rates after reverse shoulder arthroplasty may be three-fold that of conventional total shoulder arthroplasty especially in high risk patient populations and diagnoses like revision arthroplasty, fracture sequelae, and severe glenoid bone loss. Complications include component malposition, stiffness, neurological injury, infection, dislocation or instability, acromial or scapular spine fractures, scapular notching, and loosening of implants. Recognition of preoperative risk factors and appropriate 3D planning are essential in optimizing patient outcome and intraoperative success. Failure of reverse shoulder arthroplasty is a significant challenge requiring appropriate diagnosis of the failure mode. The most common neurological injuries involve the brachial plexus and the axillary nerve due to traction, manipulation of the arm, aberrant retractor placement, or relative lengthening of the arm. Intraoperative fractures are relatively uncommon but include the greater tuberosity, acromion, and glenoid. Tuberosity fracture can be repaired intraoperatively with suture techniques, glenoid fractures may be insignificant rim fractures or jeopardise baseplate fixation and require abandoning RSA until glenoid fracture ORIF heals and then a second stage RSA. Periprosthetic infection after RSA ranges from 1 to 10% and may be higher in revision cases and frequently is Propionibacterium acnes and Staphylococcus epidermidis. Dislocation was one of the most common complications after RSA approximately 5% but with increased surgeon experience and prosthetic design, dislocation rates are approaching 1–2%. An anterosuperior deltoid splitting approach has been associated with increased stability as well as subscapularis repair after RSA. Scapular notching is the most common complication after RSA. Notching may be caused by direct mechanical impingement of the humerosocket polyethylene on the scapular neck and from osteolysis from polyethylene wear. Sirveaux classified scapular notching based on the defect size as it erodes behind the baseplate towards the central post. Acromial fractures are infrequent but more common is severely eroded acromions from CTA, with osteoporosis, with excessive lengthening, and with superior baseplate screws that penetrate the scapular spine and create a stress riser. Nonoperative care is the mainstay of acromial and scapular spine fractures. Recognizing preoperative risk factors and understanding component positioning and design is essential to maximizing successful outcomes


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 593 - 593
1 Dec 2013
Wright T Conrad B Struk A
Full Access

Introduction:. The subscapularis muscle experiences significant strain as it accommodates common movements of the shoulder. Little is known about what happens with this obligatory strain once the subscapularis insertion is disrupted and repaired in the course of shoulder arthroplasty. Subscapularis failure is a serious known complication after shoulder arthroplasty. It is not known what the effect of increasing the thickness of the shoulder head will have on subscapularis strain. It is our hypothesis that the use of large or expanded humeral heads during shoulder replacement will cause increased tension in the repaired subscapularis. The primary purpose of this study was to identify the optimal manner to perform a passive range of motion (PROM) program without invoking a significant increase in strain in the repaired subscapularis. The secondary purpose was to determine the impact of varying the thickness of the humeral head on subscapularis strain using the same PROM protocol. Methods:. Eight fresh-frozen, forequarter cadaver (four female, four male) specimens were obtained following IRB approval. An extended deltopectoral incision was performed so that the subscapularis insertion site could be well visualized. PROM exercises with the following motions were evaluated: external rotation, abduction, flexion and scaption. An optical motion analysis system was used to measure strain in the subscapularis. The same measurement protocol was repeated after performing a subscapularis osteotomy and after placement of an anatomic hemiarthroplasty of three different thicknesses (short, tall, expanded). Results:. A decrease in joint laxity (less strain but more tension on the subscapularis) was observed in abduction, external rotation, and forward flexion, following implantation of the shoulder arthroplasty components. For abduction and forward flexion, we observed a trend of decreasing laxity with increasing humeral head component thickness. For external rotation, all components displayed a similar reduction in joint laxity. With the short humeral head, strain was similar to native joint with passive scaption and flexion but not with external rotation or abduction. Discussion:. The PROM that tends to minimize tension on the subscapularis is forward flexion and scaption whereas external rotation and abduction will stress the subscapularis repair. Therefore passive forward flexion or scaption do not need to be limited but clearly external rotation should have passive limits and abduction should probably be avoided. The subscapularis muscle is under greater preload tension after shoulder joint arthroplasty. Even the short head size humeral component demonstrated decreased laxity compared to the intact joint. This suggests that even the shortest head size available may not be anatomical and perhaps a thinner humeral head size would be more representative of the normal anatomy