There is no optimal therapy to stop or cure chondral degeneration in osteoarthritis (OA). Beside cartilage, subchondral bone is involved. The often sclerotic bone is mechanically less solid which in turn influences negatively chondral quality. Microfracturing as therapeutic technique aims to enhance bone quality but is applied only in smaller cartilage lesions. The osteoproliferative properties of Magnesium (Mg) have been shown repeatedly1-3. The present study examined the influence of micro-scaled Mg cylinders compared to sole drilling in an OA model. Ten New Zealand White rabbits underwent anterior crucial ligament transection. During 12 weeks after surgery, the animals developed OA as previously described4. In a second surgery, half of the animals received 20 drill holes (ø 0.5mm) and the other half received 20 drill holes, which were additionally filled with one Mg cylinder each. Extracapsular plication was performed in all animals. During the follow-up of 8 weeks three µ-computed tomographic (µCT) scans were performed: immediately after surgery and after four and eight weeks. Changes of bone volume, trabecular thickness and bone density were calculated and compared. µCT evaluation showed an increase in bone volume and trabecular thickness in both groups. This increase was significantly higher in rabbits which received Mg cylinders showing thrice as high values for both parameters (bone volume: Mg group +44.5%, drilling group +15.1%, p≤0.025; trabecular thickness: Mg group +53.2%, drilling group +16.9%, p≤0.025). Also bone density increased in both groups, but on a distinctly lower level and with no significant difference. Although profound higher bone volume was found after implantation of Mg cylinders, µCT showed similar levels of bone density indicating adequate bone quality in this OA model. Macroscopic and histological evaluation of cartilage condition have to reveal possible impact on OA progression. Additionally, current examination implement different alloys and influence on lameness.
Osteoarthritis (OA) is an inflammatory disease affecting the complete synovial joint including the cartilage layer and the
Many factors have been reported to affect the functional survival of OCA transplants, including chondrocyte viability at time of transplantation, rate and extent of allograft bone integration, transplantation techniques, and postoperative rehabilitation protocols and adherence. The objective of this study was to determine the optimal subchondral bone drilling technique by evaluating the effects of hole diameter on the material properties of OCAs while also considering total surface area for potential biologic benefits for cell and vascular ingrowth. Using allograft tissues that would be otherwise discarded in combination with deidentified diagnostic imaging (MRI and CT), a model of a large shell osteochondral allograft was recreated using LS-PrePost and FEBio based on clinically relevant elastic material properties for cortical bone, trabecular bone, cartilage, and hole ingrowth tissue. The 0.8 mesh size model consisted of 4 mm trabecular bone, 4 mm cortical bone, and 3 mm cartilage sections that summed to a cross-sectional area of 1600 mm2 (40 mm x 40 mm). Holes were modeled to be 4mm deep in relation to clinical practice where holes are drilled from the deep margin of subchondral trabecular bone to the cortical
Despite the growing success of OCA transplantation in treating large articular cartilage lesions in multiple joints, revisions and failures still occur. While preimplantation subchondral drilling is intended to directly decrease allograft bioburden and has been associated with significant improvements in outcomes after OCA transplantation, the effects of size, number, and spacing of subchondral bone drill sites have not been fully evaluated. This study aimed to investigate the effects of drill size with or without pulse-lavage of OCA subchondral bone by quantifying remnant marrow elements using histomorphometry. With IRB and ACUC approvals, human and canine OCAs were acquired for research purposes. Portions of human tibial plateau OCAs acquired from AATB-certified tissue banks that would otherwise be discarded were recovered and sectioned into lateral and medial hemiplateaus (n=2 each) with a thickness of 7 mm. Canine femoral condyles and tibial plateaus were split into lateral and medial components with a thickness of 7 mm (n=8). Using our clinical preimplantation preparation protocol, holes were drilled into the subchondral bone of each condyle and hemiplateau OCA using either 1.6 mm OD or 3.2 mm OD drill bits from the cut surface to the cortical
The micro-mechanical properties of complex biomaterials play an important role in tissue engineering and regenerative medicine, by regulating cellular processes and signalling. Local characterization of complex tissues while immersed in liquids proves to be very difficult to perform. We therefore present a method to derive viscoelastic micro-mechanical properties via non-destructive nano-indentation measurements in liquid. This technique is featured with a fiber-optical ferrule-top micro-machined force transducer, enabling a wide range of mechanical tests: from quasi-static experiments to derive elastic moduli, to step-response tests (e.g. creep, stress-relaxation), dynamic mechanical analysis (DMA) and constant strain rate tests to characterize sample viscoelastic behaviour. As a complex application we here present the osteochondral (OC) interface, which gradually ranges from hard and stiff bone regions towards softer and viscoelastic articular cartilage covering joint surface. The osteochondral plugs were collected from medial femoral condyle of cadaveric knees and measured at 37°C to mimic in-vivo physiological-like conditions. The stiffness of articular cartilage was 1.58±0.06 MPa, whereas
Long-term regeneration of cartilage defects treated with tissue engineering constructs often fails because of insufficient integration with the host tissue. We hypothesize that construct integration will be improved when implants actively interact with and integrate into the subchondral bone. Growth and Differentiation Factor 5 (GDF-5) is known to support maturation of chondrocytes and to enhance chondrogenic differentiation and hypertrophy of mesenchymal stromal cells (MSC). Therefore, we investigated whether GDF-5 is capable to stimulate endochondral ossification of MSC in vitro and in vivo and would, thus, be a promising candidate for augmenting fibrin glue in order to support integration of tissue engineering constructs into the
Joint surface restoration of deep osteochondral defects represents a significant unmet clinical need. Moreover, untreated lesions lead to a high rate of osteoarthritis. The current strategies to repair deep osteochondral defects such as osteochondral grafting or sandwich strategies combining bone autografts with ACI/MACI fail to generate long-lasting osteochondral interfaces. Herein, we investigated the capacity of juvenile Osteochondral Grafts (OCGs) to repair osteochondral defects in skeletally mature animals. With this regenerative model in view, we set up a new biological, bilayered, and scaffold-free Tissue Engineered (TE) construct for the repair of the osteochondral unit of the knee. Skeletally immature (5 weeks old) and mature (11 weeks old) Lewis rats were used. Cylindrical OCGs were excised from the intercondylar groove of the knee of skeletally immature rats and transplanted into osteochondral defects created in skeletally mature rats. To create bilayered TE constructs, micromasses of human periosteum-derived progenitor cells (hPDCs) and human articular chondrocytes (hACs) were produced in vitro using chemically defined medium formulations. These constructs were subsequently implanted orthotopically in vivo in nude rats. At 4 and 16 weeks after surgery, the knees were collected and processed for subsequent 3D imaging analysis and histological evaluation. Micro-computed tomography (µCT), H&E and Safranin O staining were used to evaluate the degree of tissue repair. Our results showed that the osteochondral unit of the knee in 5 weeks old rats exhibit an immature phenotype, displaying active subchondral bone formation through endochondral ossification, the absence of a tidemark, and articular chondrocytes oriented parallel to the articular surface. When transplanted into skeletally mature animals, the immature OCGs resumed their maturation process, i.e., formed new subchondral bone, partially established the tidemark, and maintained their Safranin O-positive hyaline cartilage at 16 weeks after transplantation. The bilayered TE constructs (hPDCs + hACs) could partially recapitulate the cascade of events as seen with the immature OCGs, i.e., the regeneration of the subchondral bone and the formation of the typical joint surface architecture, ranging from non-mineralized hyaline cartilage in the superficial layers to a progressively mineralized matrix at the interface with a new
Summary. In a rabbit model of early osteoarthritis, structural changes in femoral condyle cartilage were severer in the lateral compartment and preceded alterations in the underlying bone. In the medial compartment, altered bone properties occurred together with structural changes in cartilage. Introduction. Early osteoarthritic changes in cartilage have been previously studied through anterior cruciate ligament transection (ACLT) in rabbits. However, parallel changes in the structure of subchondral and trabecular bone at 4 weeks after ACLT are not known. Methods. Skeletally mature 14-month old New Zealand white rabbits (n=8) underwent ACLT in the left knee, while right knees were used as controls (CTRL). Femoral condyles (FCs) were harvested at 4 weeks after ACLT. INDENTATION TESTING. Stepwise stress-relaxation tests were performed on medial and lateral FC cartilage (100%/s ramp rate, 3×5% step, 15 min relaxation time). Sinusoidal loading was then applied (amplitude 4% of thickness, 1Hz, 4 cycles). Equilibrium (Eeq) and dynamic (Ed) moduli were derived from stress-relaxation and sinusoidal tests, respectively. STRUCTURAL ANALYSIS OF CARTILAGE. Polarised light microscopy (PLM) and digital densitometry (DD) were used to analyze the collagen orientation angle (COA) and proteoglycan content in the cartilage samples. STRUCTURAL ANALYSIS OF BONE. Distal compartments of FCs were scanned using a high-resolution µCT scanner (Skyscan 1172, Belgium) with an isotropic voxel size of 25 µm. µCT data were imported into Mimics (Materialise, Belgium) for segmentation. 2×2×4 mm. 3. volumes of interest (VOIs) were placed in weight-bearing regions of medial and lateral FCs.
The objectives of this study were: 1) to examine osteophyte formation, subchondral bone advance, and bone marrow lesions (BMLs) in osteoarthritis (OA)-prone Hartley guinea pigs; and 2) to assess the disease-modifying activity of an orally administered phosphocitrate ‘analogue’, Carolinas Molecule-01 (CM-01). Young Hartley guinea pigs were divided into two groups. The first group (n = 12) had drinking water and the second group (n = 9) had drinking water containing CM-01. Three guinea pigs in each group were euthanized at age six, 12, and 18 months, respectively. Three guinea pigs in the first group were euthanized aged three months as baseline control. Radiological, histological, and immunochemical examinations were performed to assess cartilage degeneration, osteophyte formation, subchondral bone advance, BMLs, and the levels of matrix metalloproteinse-13 (MMP13) protein expression in the knee joints of hind limbs.Objectives
Methods
Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 × 107 AdIGF-1 modified chondrocytes and the contralateral joint received 2 × 107 naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and correlated with increased collagen type II immunoreaction up to eight months. Genetic modification of chondrocytes with AdIGF-1 prior to transplantation improved early (four to nine weeks), and to a lesser degree long-term, cartilage healing in the equine model. The equine model of cartilage healing closely resembles human clinical cartilage repair. The results of this study suggest that cartilage healing can be enhanced through genetic modification of chondrocytes prior to transplantation.