Alternative alignment concepts, including kinematic and restricted kinematic, have been introduced to help improve clinical outcomes following total knee arthroplasty (TKA). The purpose of this study was to evaluate the clinical results, along with patient satisfaction, following TKA using the concept of restricted kinematic alignment. A total of 121 consecutive TKAs performed between 11 February 2018 to 11 June 2019 with preoperative varus deformity were reviewed at minimum one-year follow-up. Three knees were excluded due to severe preoperative varus deformity greater than 15°, and a further three due to requiring revision surgery, leaving 109 patients and 115 knees to undergo primary TKA using the concept of restricted kinematic alignment with advanced technology. Patients were stratified into three groups based on the preoperative limb varus deformity: Group A with 1° to 5° varus (43 knees); Group B between 6° and 10° varus (56 knees); and Group C with varus greater than 10° (16 knees). This study group was compared with a matched cohort of 115 TKAs and 115 patients using a neutral mechanical alignment target with manual instruments performed from 24 October 2016 to 14 January 2019.Aims
Methods
Popliteal artery injury (PAI) is a feared complication
during knee replacement. Our aim was to investigate those injuries
that occurred in association with knee replacement in terms of the
type of injury, treatment and outcomes. From our national vascular registry (Swedvasc) and the Swedish
Patient Insurance databases a total of 32 cases were identified.
Prospective data from the registries was supplemented with case-records,
including long-term follow-up. We estimated the incidence during 1998 to 2010 to be 0.017%.
In our series of 32 patients with PAI occurring between 1987 and
2011, 25 (78%) were due to penetrating trauma and seven were caused
by blunt trauma. The patients presented in three ways: bleeding
(14), ischaemia (7) and false aneurysm formation (11), and five
occurred during revision surgery. A total of 12 injuries were detected
intra-operatively, eight within 24 hours (3 to 24) and 12 at more
than 24 hours post-operatively (2 to 90 days). Treatment comprised
open surgery in 28 patients. Patency of the vascular repair at 30
days was 97% (31 of 32, one amputation). At the time of follow-up
(median 546 days, mean 677 days (24 to 1251)), 25 patients had residual
symptoms. Of seven patients with a complete recovery, six had had
an early diagnosis of the PAI during the procedure, and were treated
by a vascular surgeon in the same hospital. PAI is a rare adverse event during knee replacement surgery.
The outcome following such events is often adversely affected by
diagnostic and therapeutic delay. Bleeding and false aneurysm were
the most common clinical presentations. Cite this article:
Structural allografts may be used to manage uncontained
bone defects in revision total knee replacement (TKR). However,
the availability of cadaver grafts is limited in some areas of Asia.
The aim of this study was to evaluate the mid-term outcome of the
use of femoral head allografts for the reconstruction of uncontained
defects in revision TKR, focusing on complications related to the
graft. We retrospectively reviewed 28 patients (30 TKRs) with Anderson
Orthopaedic Research Institute (AORI) type 3 bone defects, who underwent
revision using femoral head allografts and stemmed components. The
mean number of femoral heads used was 1.7 (1 to 3). The allograft–host
junctions were packed with cancellous autograft. At a mean follow-up of 76 months (38 to 136) the mean American
Knee Society knee score improved from 37.2 (17 to 60) pre-operatively
to 90 (83 to 100) (p <
0.001). The mean function score improved
from 26.5 (0 to 50) pre-operatively to 81 (60 to 100) (p <
0.001).
All the grafts healed to the host bone. The mean time to healing
of the graft was 6.6 months
(4 to 16). There have been no complications of collapse of the graft,
nonunion, infection or implant loosening. No revision surgery was
required. The use of femoral head allografts in conjunction with a stemmed
component and autogenous bone graft in revision TKR in patients
with uncontained bone defects resulted in a high rate of healing
of the graft with minimal complications and a satisfactory outcome.
Longer follow-up is needed to observe the evolution of the graft. Cite this article:
We undertook a prospective, randomised study using a non-invasive transcranial Doppler device to evaluate cranial embolisation in computer-assisted navigated total knee arthroplasty (n = 14) and compared this with a standard conventional surgical technique using intramedullary alignment guides (n = 10). All patients were selected randomly without the knowledge of the patient, anaesthetists (before the onset of the procedure) and ward staff. The operations were performed by a single surgeon at one hospital using a uniform surgical approach, instrumentation, technique and release sequence. The only variable in the two groups of patients was the use of single tracker pins of the imageless navigation system in the tibia and femur of the navigated group and intramedullary femoral and tibial alignment jigs in the non-navigated group. Acetabular Doppler signals were obtained in 14 patients in the computer-assisted group and nine (90%) in the conventional group, in whom high-intensity signals were detected in seven computer-assisted patients (50%) and in all of the non-navigated patients. In the computer-assisted group no patient had more than two detectable emboli, with a mean of 0.64 (SD 0.74). In the non-navigated group the number of emboli ranged from one to 43 and six patients had more than two detectable emboli, with a mean of 10.7 ( Our findings show that computer-assisted total knee arthroplasty, when compared with conventional jig-based surgery, significantly reduces systemic emboli as detected by transcranial Doppler ultrasonography.