Advertisement for orthosearch.org.uk
Results 1 - 20 of 25
Results per page:
Bone & Joint Open
Vol. 1, Issue 3 | Pages 19 - 28
3 Mar 2020
Tsirikos AI Roberts SB Bhatti E

Aims. Severe spinal deformity in growing patients often requires surgical management. We describe the incidence of spinal deformity surgery in a National Health Service. Methods. Descriptive study of prospectively collected data. Clinical data of all patients undergoing surgery for spinal deformity between 2005 and 2018 was collected, compared to the demographics of the national population, and analyzed by underlying aetiology. Results. Our cohort comprised 2,205 patients; this represents an incidence of 14 per 100,000 individuals among the national population aged between zero and 18 years. There was an increase in mean annual incidence of spinal deformity surgery across the study period from 9.6 (7.2 to 11.7) per 100,000 individuals in 2005 to 2008, to 17.9 (16.1 to 21.5) per 100,000 individuals in 2015 to 2018 (p = 0.001). The most common cause of spinal deformity was idiopathic scoliosis accounting for 56.7% of patients. There was an increase in mean incidence of surgery for adolescent idiopathic scoliosis (AIS) (from 4.4 (3.1 to 5.9) to 9.8 (9.1 to 10.8) per 100,000 individuals; p < 0.001), juvenile idiopathic scoliosis (JIS) (from 0.2 (0.1 to 0.4) to one (0.5 to 1.3) per 100,000 individuals; p = 0.009), syndromic scoliosis (from 0.7 (0.3 to 0.9) to 1.7 (1.2 to 2.4) per 100,000 individuals; p = 0.044), Scheuermann’s kyphosis (SK) (from 0.2 (0 to 0.7) to 1.2 (1.1 to 1.3) per 100,000 individuals; p = 0.001), and scoliosis with intraspinal abnormalities (from 0.04 (0 to 0.08) to 0.6 (0.5 to 0.8) per 100,000 individuals; p = 0.008) across the study period. There was an increase in mean number of posterior spinal fusions performed each year from mean 84.5 (51 to 108) in 2005 to 2008 to 182.5 (170 to 210) in 2015 to 2018 (p < 0.001) and a reduction in mean number of growing rod procedures from 45.5 (18 to 66) in 2005 to 2008 to 16.8 (11 to 24) in 2015 to 2018 (p = 0.046). Conclusion. The incidence of patients with spinal deformity undergoing surgery increased from 2005 to 2018. This was largely attributable to an increase in surgical patients with adolescent idiopathic scoliosis. Paediatric spinal deformity was increasingly treated by posterior spinal fusion, coinciding with a decrease in the number of growing rod procedures. These results can be used to plan paediatric spinal deformity services but also evaluate preventative strategies and research, including population screening


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_6 | Pages 28 - 28
1 Apr 2014
Lavelle D Morris S Torrie A Katsimihas M Hutchinson J Harding I Nelson I
Full Access

Aim:. Deep infection following paediatric spinal deformity surgery is a serious complication, which can also result in increased length of stay and significant cost implications. Our objective was to reduce deep infection rates following spinal deformity surgery. Method:. All paediatric patients undergoing spinal deformity procedures between 2008 and 2010 (group 1) were prospectively followed up and deep infection rates recorded. In 2010, a review of infection rates necessitated a change in pre-operative, peri-operative, and post-operative practice. A scoliosis wound care pathway was implemented, which involved insertion of drains to protect wounds, strict dressing management performed by a Spinal Nurse Practitioner, and a telephone helpline for concerns about wound care and general peri-operative scoliosis care. The use of betadine wash and local antibiotic application intra-operatively were other measures instigated later in this period. All paediatric patients undergoing surgery between 2011 and 2012 (group 2) were then followed up and differences in infection rates between the two groups were analysed. Results:. 260 patients undergoing 275 procedures were included in this study. Numbers of operations increased from 38 in 2008 to 71 in 2012. There were 19 neuromuscular, 19 congenital, and 42 idiopathic cases in group 1 and 15, 35, and 84 in group 2. Deep infection rates reduced significantly from 15% to 0.75% (p<0.0001). Discussion:. Deep infection rates following paediatric spinal deformity surgery can be significantly reduced by use of a team-based multi-modal approach. A robust scoliosis wound care pathway is essential to maintain high standards post-operatively. Conflict Of Interest Statement: No conflict of interest


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 547 - 552
1 Mar 2021
Magampa RS Dunn R

Aims. Spinal deformity surgery carries the risk of neurological injury. Neurophysiological monitoring allows early identification of intraoperative cord injury which enables early intervention resulting in a better prognosis. Although multimodal monitoring is the ideal, resource constraints make surgeon-directed intraoperative transcranial motor evoked potential (TcMEP) monitoring a useful compromise. Our experience using surgeon-directed TcMEP is presented in terms of viability, safety, and efficacy. Methods. We carried out a retrospective review of a single surgeon’s prospectively maintained database of cases in which TcMEP monitoring had been used between 2010 and 2017. The upper limbs were used as the control. A true alert was recorded when there was a 50% or more loss of amplitude from the lower limbs with maintained upper limb signals. Patients with true alerts were identified and their case history analyzed. Results. Of the 299 cases reviewed, 279 (93.3%) had acceptable traces throughout and awoke with normal clinical neurological function. No patient with normal traces had a postoperative clinical neurological deficit. True alerts occurred in 20 cases (6.7%). The diagnoses of the alert group included nine cases of adolescent idiopathic scoliosis (AIS) (45%) and six of congenital scoliosis (30%). The incidence of deterioration based on diagnosis was 9/153 (6%) for AIS, 6/30 (20%) for congenital scoliosis, and 2/16 (12.5%) for spinal tuberculosis. Deterioration was much more common in congenital scoliosis than in AIS (p = 0.020). Overall, 65% of alerts occurred during rod instrumentation: 15% occurred during decompression of the internal apex in vertebral column resection surgery. Four alert cases (20%) awoke with clinically detectable neurological compromise. Conclusion. Surgeon-directed TcMEP monitoring has a 100% negative predictive value and allows early identification of physiological cord distress, thereby enabling immediate intervention. In resource constrained environments, surgeon-directed TcMEP is a viable and effective method of intraoperative spinal cord monitoring. Level of evidence: III. Cite this article: Bone Joint J 2021;103-B(3):547–552


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_6 | Pages 29 - 29
1 Apr 2014
Morris S Marriott H Walsh P Kane N Harding I Hutchinson J Nelson I
Full Access

Aim:. Recent guidelines have been published by the Association of Neurophysiological Scientists / British Society for Clinical Neurophysiology (ANS/BSCN) regarding the use of intra-operative neurophysiological monitoring (IOM) during spinal deformity procedures. We present our unit's experience with IOM and the compliance with national guidelines. Method:. All patients undergoing intra-operative spinal cord monitoring during adult and paediatric spinal deformity surgery between Jan 2009 and Dec 2012 were prospectively followed. The use of somatosensory-evoked potentials (SSEPs) and motor-evoked potentials (MEPs) was recorded and monitoring outcomes were compared to post-operative clinical neurological outcomes. Compliance with the national ANS/BSCN guidelines was assessed. Results:. 333 patients were included in this study. IOM was successful in 312 patients (94%), with both MEPs and SSEPs obtained in 282 patients (85%). SEPs were achieved in 91% and MEPs in 87%. Aetiology was idiopathic in 199 cases, 53 neuromuscular, 28 degenerative, 16 congenital, 16 other. Nine patients had changes in IOM related to surgical activity; six had MEP changes only, three had MEPs and SSEPs changes. All but one of these changes returned to baseline following surgical action; the one remaining patient had a temporary postoperative neurological deficit. One patient had a post-operative single radiculopathy requiring surgical exploration, without change in initial IOM. Final IOM findings demonstrated a positive predictive value (PPV) of 1 and a negative predictive value (NPV) of 0.996. Discussion:. IOM is essential during spinal deformity surgery and, using MEPs, has a high PPV and NPV. Our unit meets guidelines for MEP use and frequently meets guidelines for SSEP use. Conflict Of Interest Statement: No conflict of interest


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_15 | Pages 21 - 21
1 Oct 2014
Masud S James S Jones A Davies P
Full Access

The K2M MESA Rail is a new implant with a unique beam-like design which provides increased rigidity compared with a standard circular rod of equivalent diameter potentially allowing greater control and maintenance of correction. The aim of this study was to review our early experience of this implant. We retrospectively reviewed the case notes and radiographs of all consecutive cases of spinal deformity correction in which at least one rail was used. All radiological measurements were made according to the Scoliosis Research Society definitions. Since June 2012 thirty-three cases of spinal deformity correction were performed using the K2M Rail system. One case was excluded as there were no pre-operative radiographs. Median age was 15 years; there were 23 females. There were 26 scoliosis cases of which two had associated Chiari malformation, three were neuromuscular, and the remainder were adolescent idiopathic cases. Six patients had kyphotic deformity secondary to Scheuermann's disease. Mean length of follow-up was 16 months. In the scoliosis cases the mean pre-operative Cobb angle of the major curve was 58.6° with a mean correction of 35.6°. The mean post-operative thoracic kyphosis was 21.1°. The median number of levels included in the correction was 13. Bilateral rails were used in four cases, the remainder had one rail on the concave side and a contralateral rod. No patients required an anterior release or staged surgery. All kyphosis cases had posterior apical corrective osteotomies. The mean pre-operative thoracic kyphosis was 75.5° with a mean correction of 31°. The median number of levels included in the correction was 11. Four patients had bilateral rails. No patients required anterior release. Complications: two patients had prominent hardware. One patient had a malpositioned screw causing nerve root irritation, which was removed. There were three superficial infections, which settled with antibiotics. There were no cases of implant breakage, screw pull-out, or loss of correction. The K2M MESA Rail is a powerful new implant design which helps to achieve and maintain satisfactory correction of complex spinal deformity, and is particularly strong at correcting kyphotic deformity. It also enables restoration of normal thoracic kyphosis, particularly in idiopathic thoracic curves, which tend to be lordosing. This may prevent thoracic flat back and potential long-term sequelae. Early results show that the system is as safe and effective as other posterior deformity correction implants on the market, however, it requires further prospective follow-up to ascertain its outcomes in the long-term


The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1249 - 1255
1 Nov 2022
Williamson TK Passfall L Ihejirika-Lomedico R Espinosa A Owusu-Sarpong S Lanre-Amos T Schoenfeld AJ Passias PG

Aims

Postoperative complication rates remain relatively high after adult spinal deformity (ASD) surgery. The extent to which modifiable patient-related factors influence complication rates in patients with ASD has not been effectively evaluated. The aim of this retrospective cohort study was to evaluate the association between modifiable patient-related factors and complications after corrective surgery for ASD.

Methods

ASD patients with two-year data were included. Complications were categorized as follows: any complication, major, medical, surgical, major mechanical, major radiological, and reoperation. Modifiable risk factors included smoking, obesity, osteoporosis, alcohol use, depression, psychiatric diagnosis, and hypertension. Patients were stratified by the degree of baseline deformity (low degree of deformity (LowDef)/high degree of deformity (HighDef): below or above 20°) and age (Older/Younger: above or below 65 years). Complication rates were compared for modifiable risk factors in each age/deformity group, using multivariable logistic regression analysis to adjust for confounders.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_6 | Pages 30 - 30
1 Apr 2014
Durst A Bhagat S Mahendran K Grover H Blake J Lutchman L Rai A Crawford R
Full Access

Aim:. An analysis of significant neuromonitoring changes (NMCs) and evaluation of the efficacy of multimodality neuromonitoring in spinal deformity surgery. Method:. A retrospective review of prospectively collected data in 320 consecutive paediatric and adult spinal deformity operations. Patients were sub-grouped according to demographics (age, gender), diagnosis, radiographic findings (Cobb angles, MR abnormalities) and operative features (surgical approach, duration, levels of fixation). Post-operative neurological deficit was documented and defined as either spinal cord or nerve root deficit. Results:. 296 paediatric and adult patients were monitored in 320 consecutive spinal deformity operations between 2003 and 2013. Combined monitoring with SSEPs and MEPs was considered successful (296 of 320 operations), when it was able to produce reproducible signals with regards to SEP and / or MEP. SEP was attempted but unrecordable in 1 case, while MEPs were contraindicated in 23 cases due to epilepsy and/or medications. The overall incidence of significant NMC was 7.5% (24 NMCs out of 320 operating episodes) and overall neurological deficit was 1.6%. There were 19 true positives, 5 false positives and zero false negative results. When results were collated, the overall combined sensitivity of multimodal monitoring was 100%, specificity 98.3%, PPV 79.2% and NPV 98.3%. Discussion:. Multimodal monitoring allows accurate assessment and prevention of permanent neurological deficit that is superior to any single monitoring modality. Conflict Of Interest Statement: No conflict of interest


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_15 | Pages 8 - 8
1 Oct 2014
Leong J Curtis M Carter E Cowan J Lehovsky J
Full Access

There is a wide range of reports on the prevalence of neurological injuries during scoliosis surgery, however this should depend on the subtypes and severity of the deformity. Furthermore, anterior versus posterior corrections pose different stresses to the spine, further quantifications of neurological risks are presented.

Neuromonitoring data was prospectively entered, and the database between 2006 and 2012 was interrogated. All deformity cases under the age of 21 were included. Tumour, fracture, infection and revision cases were excluded.

All “red alerts” were identified and detailed examinations of the neuromonitoring records, clinical notes and radiographs were made. Diagnosis, deformity severity and operative details were recorded.

2290 deformity operations were performed: 2068 scoliosis (1636 idiopathic, 204 neuromuscular, 216 syndromic, and 12 others), 89 kyphosis, 54 growing rod procedures, and 80 operations for hemivertebra. 696 anterior and 1363 posterior operations were performed for scoliosis (8 not recorded), and 38 anterior and 51 posterior kyphosis correction.

67 “red alerts” were identified, there were 14 transient and 6 permanent neurological injuries. 62 were during posterior stage (24 idiopathic, 21 neuromuscular, 15 syndromic (2 kyphosis), 1 growing rod procedure, 1 haemivertebra), and 5 were during anterior stage (4 idiopathic scoliosis and 1 syndromic kyphosis). Average Cobb angle was 88°. 1 permanent injuries were during correction for kyphosis, and 5 were for scoliosis (4 syndromic, 1 neuromuscular, and 1 anterior idiopathic).

Common reactions after “red alerts” were surgical pause with anaesthetic interventions (n=39) and the Stagnara wake-up test (n=22). Metalwork was partially removed in 20, revised in 12 and completely removed in 9. 13 procedures were abandoned.

The overall risk of permanent neurological injuries was 0.2%, the highest risk groups were posterior corrections for kyphosis and scoliosis associated with a syndrome. 4% of all posterior deformity corrections had “red alerts”, and 0.3% resulted in permanent injuries; compared to 0.6% “red alerts” and 0.3% permanent injuries for anterior surgery. The overall risk for idiopathic scoliosis was 0.06%.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 35 - 35
1 Jun 2012
Noordeen H Elsebaie H Akbarnia B
Full Access

Introduction

Surgical correction of spinal deformities is a challenge; segmental instrumentation controlling almost every level is the most recent approach. Correction of the deformity only through apical manipulation has many potential advantages, including little tissue disruption, less invasive intervention, preservation of spinal mobility, and vertebral growth. However, quantification of the amount of force needed to pull on the apex and its effect on translation, de-rotation, and overall correction of the curve needs to be studied. The purpose of this study is to determine the effect and amount of force needed to pull on the apex of a scoliotic deformity towards the midline, and the feasibility of use of this novel potential method of correction in the treatment of patients with adolescent idiopathic scoliosis (AIS).

Methods

Measurements were taken from 20 patients with AIS treated between June, 2009, and January, 2010. There were 16 female and 4 male patients with an average age of 14.2 years (range 11–20); the coronal preoperative Cobb angle was 67° (42–108°), decreasing on bending to 39° (8–83°), and the apex of the deformity was between T6 and L2. All patients had proximal and distal anchors spanning two levels on each end; the anchors were connected by a concave rod to which the apical vertebra was pulled. We measured the distance between the rod and the apical vertebra and the rotation of the apical vertebrae.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XX | Pages 14 - 14
1 May 2012
Mehdian H Mehdian R Copas D
Full Access

Objective

The use of all pedicle screw constructs for the management of spinal deformities has gained widespread popularity. However, the placement of pedicle screws in the deformed spine poses unique challenges for the spinal surgeon. The purpose of this study was to evaluate the complications and radiological outcomes of surgery in 124 consecutive patients with spinal deformity. These patients underwent correction of coronal and sagittal imbalance with segmental pedicle screw fixation only.

Background

All pedicle screw constructs have been associated with improved correction in all three planes. In patients with severe deformity, such constructs can obviate the need for anterior surgeries, and the higher implant cost is offset by the avoidance of dual anterior and posterior approaches. Pedicle screw fixation enables enhanced correction of spinal deformities, but the technique is still not widely applied for thoracic deformities for fear of neurological complications. This is a retrospective study that was carried out on 124 patients who underwent segmental screw fixation for coronal and sagittal spinal deformities. The purpose of this study was to evaluate the complications and outcomes of this technique and also assess the evidence of enhanced correction.


The Bone & Joint Journal
Vol. 103-B, Issue 6 | Pages 1133 - 1141
1 Jun 2021
Tsirikos AI Wordie SJ

Aims. To report the outcome of spinal deformity correction through anterior spinal fusion in wheelchair-bound patients with myelomeningocele. Methods. We reviewed 12 consecutive patients (7M:5F; mean age 12.4 years (9.2 to 16.8)) including demographic details, spinopelvic parameters, surgical correction, and perioperative data. We assessed the impact of surgery on patient outcomes using the Spina Bifida Spine Questionnaire and a qualitative questionnaire. Results. The mean follow-up was 5.4 years (2 to 14.9). Nine patients had kyphoscoliosis, two lordoscoliosis, and one kyphosis. All patients had a thoracolumbar deformity. Mean scoliosis corrected from 89.6° (47° to 151°) to 46.5° (17° to 85°; p < 0.001). Mean kyphosis corrected from 79.5° (40° to 135°) to 49° (36° to 65°; p < 0.001). Mean pelvic obliquity corrected from 19.5° (8° to 46°) to 9.8° (0° to 20°; p < 0.001). Coronal and sagittal balance restored to normal. Complication rate was 58.3% (seven patients) with no neurological deficits, implant failure, or revision surgery. The degree of preoperative spinal deformity, especially kyphosis and lordosis, correlated with increased blood loss and prolonged hospital/intensive care unit stay. The patients reported improvement in function, physical appearance, and pain after surgery. The parents reported decrease in need for everyday care. Conclusion. Anterior spinal fusion achieved satisfactory deformity correction with high perioperative complication rates, but no long-term sequelae among children with high level myelomeningocele. This resulted in physical and functional improvement and high reported satisfaction. Cite this article: Bone Joint J 2021;103-B(6):1133–1141


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_15 | Pages 34 - 34
1 Oct 2014
Molloy S Bruce G Butler J Benton A
Full Access

To examine the impact of a structured rehabilitation programme as part of an integrated multidisciplinary treatment algorithm for adult spinal deformity patients. A prospective cohort study was performed over a 2-year period at a major tertiary referral centre for adult spinal deformity surgery. All consecutive patients requiring 2-stage corrective surgery for sagittal malalignment were included (n=32). Details of physiotherapy initial evaluation, inpatient rehabilitation progress, details of bracing treatment and time to discharge were collected. Clinical outcome scores were measured preoperatively and at 6 weeks, 6 months and 1 year postoperatively. After second stage corrective surgery, the mean time to standing without assistance was 2.1 days, mean time to independent ambulation was 4.2 days, mean time to competent ascending and descending stairs was 5.6 days and mean time to moulded orthosis application 7.1 days. Successful progression through the structured rehabilitation programme was associated with high clinical outcome scores and improved health related quality of life (HRQOL). The introduction of this programme contributed to the development of an enhanced recovery pathway for patients having adult spinal deformity surgery, reducing inpatient length of stay and optimising clinical outcomes


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_6 | Pages 31 - 31
1 Apr 2014
Keenan A Henderson L Michaelson C Tsirikos A
Full Access

Aim:. To present the results of multi-modal IOM in 298 patients who underwent spinal deformity correction. Method:. We reviewed the notes, surgical and IOM charts of all patients who underwent spinal surgery with the use of cortical and cervical SSEPs, as well as upper/lower limb transcranial electrical MEPs under the senior author. We recorded IOM events which we categorised as true, transient true and false (+) or (−). We correlated the IOM events with surgical or anaesthetic incidents. Results:. Diagnosis included idiopathic scoliosis in 224, congenital in 12, syndromic in 14, scoliosis with intraspinal anomaly in 5, scoliosis with congenital cardiac disease in 4, spondylolisthesis in 2, spinal tumour in one, and Scheuermann's kyphosis in 36 patients. We identified 3 true (+) monitoring events occurring in 2 patients (1%), 6 transient true (+) (2%), and 11 transient false (+) events (3.7%). True (+) events occurred during deformity correction in one patient with severe AIS and during osteotomies in another with severe Scheuermann's. Transient true (+) events occurred during posterior osteotomies in 2 patients with Scheuermann's, during scoliosis correction (apical correction with sublaminar wires) in one and placement of concave apical pedicle screw in another patient, and 2 IOM changes during positioning (one during reduction of spondylolisthesis-one during positioning on the surgical table). Transient false (+) events were mainly related to low blood pressure (10 patients). There were no false (−) IOM events and none of our patients had postoperative neurological complications. Sensitivity of our IOM technique was 100% [all patients with impending spinal cord injury will have a (+) event] and specificity 96% (patients with normal IOM had 96% chance that the cord was safe). Positive predictive value was 65.3% (65.3% chance that an IOM event reflected a surgical-related cause of cord injury); negative predictive value 100% (100% chance that normal IOM corresponded to no cord injury). We found no difference between patients with AIS and Scheuermann's in terms of risk of true or transient true (+) IOM events (Fisher's exact test, p=0.12). Discussion:. Multimodal IOM is highly sensitive and specific for spinal cord injury. This technique is reliable to assess the condition of the spinal cord during high-risk major spinal deformity surgery. Conflict of interest statement: None


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_15 | Pages 23 - 23
1 Oct 2014
Molloy S Butler J Yu H Benton A Selvadurai S
Full Access

To evaluate the differences between spinopelvic parameters before and after sagittal malalignment correction and to assess the relationship between these radiologic parameters and clinical outcome scores. A prospective cohort study was performed over a 2-year period at a major tertiary referral centre for adult spinal deformity surgery. All consecutive patients requiring 2-stage corrective surgery were included (n=32). Radiographic parameters and clinical outcome measures were collected preoperatively and at 6 weeks, 6 months, 1 year and 2 years postoperatively. Radiographic parameters analysed included pelvic incidence, pelvic tilt, sacral slope, lumbar lordosis, thoracic kyphosis and sagittal vertical axis. Clinical outcome measures collected included EQ-5D, ODI, SRS 22 and VAS Pain Scores. Correction of sagittal malalignment was associated with significant improvements in HRQOL. Restoration of lumbar lordosis, pelvic tilt and sagittal vertical axis correlated with postoperative improvements in EQ-5D, ODI, SRS 22 and VAS Pain Scores at follow-up. This study demonstrates that the magnitude of sagittal plane correction correlates with the degree of clinical improvements in HRQOL. This further underlines the need for spinal surgeons to target complete sagittal plane deformity correction if they wish to achieve the highest rates of HRQOL benefit in patients with marked sagittal malalignment


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_15 | Pages 27 - 27
1 Oct 2014
Molloy S Butler J Yu H Selvadurai S Panchmatia J
Full Access

To evaluate the incidence of complications and the radiographic and clinical outcomes from 2-stage reconstruction including 3-column osteotomy for revision adult spinal deformity. A prospective cohort study performed over 2 years at a major tertiary referral centre for adult spinal deformity surgery. All consecutive patients requiring 2-stage corrective surgery for revision adult spinal deformity were included. Radiographic parameters and clinical outcome measures were collected preoperatively and at 6 weeks, 6 months, 1 year and 2 years postoperatively. Radiographic parameters analysed included pelvic incidence, pelvic tilt, sacral slope, lumbar lordosis, thoracic kyphosis and sagittal vertical axis. Clinical outcome measures collected included EQ-5D, ODI, SRS 22 and VAS Pain Scores. Performing anterior column reconstruction followed by 3-column osteotomy and extension of instrumentation for revision spinal deformity resulted an excellent correction of sagittal alignment, minimal surgical complications and significant improvements in HRQOL. Restoration of lumbar lordosis, pelvic tilt and sagittal vertical axis were observed in addition to postoperative improvements in EQ-5D, ODI, SRS 22 and VAS Pain Scores at follow-up. Performing anterior column reconstruction prior to a 3-column osteotomy minimises complications associated with 3-column osteotomy and extension of posterior instrumentation. We propose a treatment algorithm for safe and effective treatment in revision adult deformity surgery


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 105 - 105
1 Apr 2012
Bertram W Harding I
Full Access

Modern techniques facilitate the treatment of adult spinal deformity. Decision making is a challenge because of potential complications relating to the surgery itself and medical problems. This study aims to provide useful data in facilitating the decision making process. Retrospective analysis of consecutive single surgeon series of patients aged >50 between 2006-2009 undergoing multi-level spinal deformity surgery with concomitant decompression. Medical co-morbidities, age and ASA were recorded. 71 patients (57 female) mean age 66 (50-83). 29 (12 multiple) failed previous stenosis surgery. 14(19.7%) in hospital complications in 11(15.5%) patients. 4 were ‘medical’. 8/11 patients were revision cases versus 3/11 primary. 4 patients (5.6%) needed further surgery. 13(18.3%) outpatient complications in 12(16.9%)patients. 7/12 occurred in revision cases versus 5/12 in primary. 11(15.5%) needed further surgery. Revisional surgery in adult deformity presents a significantly higher overall complication rate than primary surgery (p= 0.0084), but both revisional and primary cases have a relatively high re-operation rate once initially discharged. The results indicate that complex medical and surgical factors contribute to the decision making challenge in patients with adult spinal deformity and stenosis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXI | Pages 17 - 17
1 Jul 2012
Pyrovolou N MacDonald JW Fairbank J Nnadi C
Full Access

STUDY DESIGN. Retrospective study of 8 children treated with vertical expandable prosthetic titanium rib (VEPTR) for correction of early onset spinal scoliotic deformities. METHODS. 8 children with progressive scoliosis due to a variety of conditions, 6 congenital (2 Goldenhar syndrome, 2 VACTERL syndrome, 2 congenital thoracic abnormalities), 1 spondyloepiphyseal dysplasia, 1 early onset of scoliosis, underwent the index procedure and subsequent lengthening procedures at 6 months intervals (1 patient had 11 lengthening procedures). Mean age was 4 years (2-6 years) and mean follow up 3.8 years (2-6 years). Mean preoperative Cobb angle was 64,8° (51-108) and mean postoperative angle 40° (31-50). RESULTS. There were no neurological complications. Three patients developed infection with wound breakdown. One patient underwent removal of one of the two VEPTR rods. In the other two patients the rods were removed followed by antibiotics and the VEPTR converted to another growing rod system. Overall, patients tolerated the multiple procedures well. Three patients experienced significant distress with multiple surgical procedures. CONCLUSION. VEPTR offers a viable treatment option for children with severe congenital and early onset scoliosis where there are no viable alternatives. It achieves and maintains spinal deformity correction, while allowing for continued spine and chest-wall growth. Complication rate is acceptable in view of the benefits. None of the complications have lead to long term complications to date, but the repeated lengthening have resulted in psychological disturbance which we are investigating further. An implantable driver would offer very significant advantages and would avoid some of the repeated operations


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 97 - 97
1 Apr 2012
Mukhopadhyay S Batra S Ahuja S
Full Access

In major procedures like scoliosis surgery, parents are often asked to sign the consent on behalf of children because of the pretext that minor may have limited understanding and judgement about the procedure. Scoliosis surgery for patients with AIS is mainly indicated for cosmetic or psychological reasons. We audited our practice in the department to collect information on the current consent practices involving the minor patients undergoing scoliosis surgery. We also have conducted a questionnaire survey of the various spinal units in UK to assess their practice in this regard. Forty-two consent forms (28 patients; multiple procedures in some patients) and case notes of patients between 12 and 16 years undergoing scoliosis surgery were reviewed. We have contacted 12 spinal deformity correction units and 11 spinal trauma units across UK over telephone to assess the current consenting practice as well. 9.5% (n=4) patients signed there own consent forms. Except in one case explanation of risks were documented in detail. Except two units (18%) offering the minor patient to sign their consent, parents are usually asked to sign consent on their behalf in majority (10/12) units. Seven out of the twelve spinal units use standard NHS or department of health consent forms. Few units have their own consent form with some alterations or additions. There is no specific age when a child becomes competent to consent to treatment: It depends both on the child and on the seriousness and complexity of the treatment being proposed. However, it is still good practice to encourage competent children to more involved along with their families in decision-making


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_15 | Pages 24 - 24
1 Oct 2014
Upadhyay N Robinson P Harding I
Full Access

To describe complications and reoperation rates associated with degenerative spinal deformity surgery. A retrospective review of prospectively collected data from a single spinal surgeon in the United Kingdom. A total of 107 patients who underwent surgery, of 5 or more levels, for primary degenerative kyphoscoliosis between 2006 and 2012 were identified. Clinical notes were reviewed and post-operative complications, reoperation rates, length of follow up and mortality were analysed. A total of 107 patients, average aged 66.5 years (range 52 – 85), with 80% women. 105 patients underwent posterior surgery, two patients required both anterior and posterior surgery. The average number of instrumented levels was 8.3; 10% 5 levels, 15% 6 levels, 11% 7 levels, 14% 8 levels, 15% 9 levels and 35% had fusions of 10 levels and above. 58% included fixation to sacrum or pelvis. 93% had a decompression performed and 30% had an osteotomy. There were 40 complications recorded within the follow-up period. Infection occurred in 7 patients (6.5%). All were successfully managed with debridement, antibiotic therapy and retention of implants. There were 4 dural tears (3.7%). One patient developed a post-operative DVT (0.9%). No patients sustained cord level deficits. Prevalence of mechanical complications requiring re-operation was 26% (28 patients). 5 patients (4.7) required revision surgery for symptomatic pseudarthrosis, 7 patients (6.5%) underwent revision fixation for metal work failure (broken rods/screw pull-out) and 16 patients (14.9%) underwent revision surgery to extend fixation proximally or distally due to adjacent segment disease (symptomatic proximal junction kyphosis 4.7%; osteoporotic fracture 3.7% and junctional/nerve root pain 6.5%). Overall reoperation rate was 32.5% at an average of 1.9 years following primary surgery (range 1 week–6 years). 37% patients remain on regular outpatient review (average 3.8 years following first surgery; range 2–6 years). 52% have been discharged after a mean follow-up of 2.3 years. 11 patients had died since their surgery (10.2%) at an average 4.1 years following their spinal surgery (range 1 –5.9 years). Overall complication rate was 37.3%. 32.5% of patients were re-operated for infective or mechanical complications. 52% of patients had been discharged at an average of 2.3 years following their surgery. 10.2% of patients had died within 6 years of surgery


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVI | Pages 75 - 75
1 Jun 2012
Thakar C Brown C Rolton D Nnadi C
Full Access

Study Purpose. A systematic review of the current literature to address the debate of the optimal surgical approach for the treatment of adolescent idiopathic scoliosis (AIS). Method. All studies comparing anterior open instrumented surgery with posterior instrumented surgery in patients with AIS, written in English and published up until February 2010 were included. Electronic databases searched included Medline, PubMed and the Cochrane database using “AIS” and “surgery” as key words. Outcome measures considered to be important were specifically identified in each paper included: Blood loss (ml); operation time (mins); hospital stay (days); curve correction (sagittal and coronal); number of fused levels; pulmonary function, and complications. Results. Twenty one relevant papers were identified from a possible 399. Nine of these studies were performed prospectively with four involving more than one centre. The average total number of patients in each study was 246 with a mean pre-operative curve Cobb angle of 47 degrees in those patients treated via anterior surgical instrumentation and 52 degrees with posterior surgery. Three papers showed significant reduction in blood loss with anterior surgery while four studies observed a reduction in operative time and length of hospital stay with posterior surgery. Eleven papers analysed curve correction specifically and while comparable correction was achievable with both approaches the number of fusion levels was significantly fewer with anterior fixation in all. Three of the four studies evaluating lung function demonstrated that patients undergoing posterior fusion had better measures of pulmonary function than the anterior group. No significant difference was observed between the two approaches with regards to complications. Conclusion. Both surgical approaches have their merits and disadvantages. Our study has not demonstrated one approach to be overall superior. Approach selection should be based on the advantages offered by each approach to the individual patient and the surgeon's own experience in spinal deformity correction