Dupuytren's disease (DD) is a fibroproliferative soft tissue disease affecting the palmar fascia of the hand causing permanent and irreversible flexion contracture. Aberrant fibrosis is likely to manifest through a combination of extrinsic, intrinsic, and environmental factors, including genetics and epigenetics. However, the role of epigenetics in soft tissue fibrosis in diseases such as DD is not well established. Therefore, we conducted a comprehensive multi-omic study investigating the epigenetic profiles that influence gene expression in DD pathology. Using control (patients undergoing carpal tunnel release) and diseased fibroblasts (patients undergoing Dupuytren's fasciectomy), we conducted ATAC-seq to assess differential chromatin accessibility between control and diseased fibroblasts. Additionally, ChIP-seq mapped common histone modifications (histone H4; H3K4me3, H3K9me3, H3K27me3, H4K16Ac, H4K20Me3) associated with fibrosis. Furthermore, we extracted RNA from control and DD tissue and performed bulk RNA-seq. ATAC-seq analysis identified 2470 accessible genomic loci significantly more accessible in diseased fibroblasts compared to control. Comparison between diseased and control cells identified numerous significantly different peaks in histone modifications (H4K20me3, H3K27me3, H3K9me3) associated with gene repression in control cells but not in diseased cells. Pathway analysis demonstrated a substantial overlap in genes being de-repressed across these histone modifications (Figure 1). Both, ATAC-seq and ChIP-seq analysis indicated pathways such as cell adhesion, differentiation, and extracellular matrix organisation were dysregulated as a result of epigenetic changes. Moreover, The current epigenetic study provides insights into the aberrant fibrotic processes associated with soft tissue diseases such as DD and indicates that epigenetic-targeted therapies may be an interesting viable treatment option in future. For any figures or tables, please contact the authors directly.
Objectives. The clinical utility of routine cross sectional imaging of the
abdomen and pelvis in the screening and surveillance of patients
with primary
A major pathway of closed
To evaluate mechanical properties of three suture-tendon constructs, the Krackow stitch (KS), the modified Prusik knot (PK) and the Locking SpeedWhip (LSW), using human cadaveric quadriceps grafts (QT). Thirty QT grafts were obtained from human cadaver specimens and an equal number of tendon-suture constructs were prepared for three stitches: KS, PK and LSW. The constructs were mounted in a materials testing machine (ElectroPuls E10000, Instron, Norwood, MA) and subject to tensile loading based on an established protocol. Load and displacement data for each tendon-suture construct were recorded.Abstract
Objectives
Methods
Being challenging, multifragmentary proximal tibial fractures in patients with severe soft tissue injuries and/or short stature can be treated using externalized locked plating. A recent finite element study, investigating the fixation stability of plated unstable tibial fractures with 2-mm, 22-mm and 32-mm plate elevation under partial and full weight-bearing, reported that from a virtual biomechanical point of view, externalized plating seems to provide appropriate relative stability for secondary bone healing under partial weight-bearing during the early postoperative phase. The aim of the current study was to evaluate the clinical outcomes of using a LISS plate as a definitive external fixator for the treatment of multifragmentary proximal tibial fractures. Following appropriate indirect reduction, externalized locked plating was performed and followed up in 12 patients with multifragmentary proximal tibial fractures with simple intraarticular involvement and injured soft tissue envelope.Introduction
Methods
To describe clinical situations for use of modified VAC in POC based on: diagnosis, comorbidities, BMI, wound size in cm, days following trauma when VAC was first applied, total duration of uninterrupted use, frequency of change, settings, bacterial growth, outcomes To report the outcomes of mVAC use in POC within 6 months to help improve and standardize its application in the institution This study involves data gathering from inpatients handled by orthopedic surgeons in training and subspecialty rotations in POC. The data collected are highly dependent on the doctors-in-charge's complete charting, thorough reporting and accurate documentation.
Modified Vacuum Assisted Closure (mVAC) is used frequently in this study and is defined as a form of revised, adapted and reformed use of VAC based on available materials in the involved institution. The materials that are included are, but not limited to the following: sterile Uratex™ blue foam, nasogastric or suction tubing, phlegm suction machine, Bactigras™ and Opsite™ or Ioban™. A total of 58 patients were included in the study. The average age of the population was 35 and are predominantly male. The most common mechanism of injury was motorcycle accident and 37 of the patients were diagnosed with an open fracture of the lower extremity with open tibia fractures (22) being the most common. Average wound area measured was 24.12 cm3. All patients yield a bacteria growth with e. coli being the most frequent. Average during of uninterrupted use was 39 days. Of the 58 included in the study, 8 patients underwent STSG, 2 had a flap coverage surgery, 4 patients eventually underwent amputation and 33 with complete resolution of soft tissue defect after conversion to biologic dressing post-mVAC. The rest of the population were still ongoing mVAC at the end of the study. mVAC is an alternative temporary medium for soft tissue coverage for cases with or without concomitant fractures. mVAC promotes removal of exudate from the wound, supports wound apposition and granulation bed proliferation. Usage mVAC helps prepare for skin coverage procedure and on some cases leads to full resolution of defect.
PEMF is currently approved by the FDA for adjunctive treatment of lumbar/cervical spine fusion and for treatment of long-bone non-unions. Soft tissues are a potential new therapeutic application for PEMF due to pre-clinical studies showing a reduction of inflammatory markers following PEMF exposure. The aim was therefore to investigate the structural/functional effects of PEMFs on tendon-to-bone and tendon-to-tendon healing in a rotator-cuff (RC) and Achilles tendon (AT) repair model, respectively. RC study: Adult male rats (n=280), underwent bi-lateral supraspinatus tendon transections with immediate repair followed by cage activity until sacrifice (4, 8, and 16 weeks). Non-controls received PEMF for 1, 3, or 6 hours daily. AT study: Male rats underwent acute, complete transection and repair of the Achilles tendon (FULL, n=144) or full thickness, partial width injury (PART, n=160) followed by immobilization for 1 week. Sacrifice was at 1, 3, and 6 weeks. Outcome measures included passive joint mechanics, gait analysis, biomechanical assessments, histological analysis of the repair site and mCT (humerus) assessment (FULL only). RC study: Significant increases in modulus, stiffness, bone mineral content and improved collagen organization was observed for the PEMF groups. No differences in joint mechanics and ambulation were observed. AT study: A decrease in stiffness and limb-loading rate was observed for the PEMF groups for the FULL groups, whereas an increase in stiffness with no change in range-of-motion was seen for the PART groups. The combined studies show that PEMF can be effective for soft tissue repair but is dependent on the location of application.
Acetabular tissue damage is implicated in osteoarthritis (OA) and investigation of in situ acetabular soft tissues behaviour will improve understanding of tissue properties and interconnections. The study aim was to visualise acetabular soft tissues under load and to quantify displacements using computed tomography (CT) scans (XtremeCT, Scano Medical). A CT scan (resolution 82 μm) was performed on the disarticulated, unloaded porcine acetabulum. The femoral head was soaked in Sodium Iodide (NaI) solution and cling film wrapped to prevent transfer to the acetabular side. The joint was realigned, compressed using cable ties and re-scanned. The two images were down-sampled to 0.3 mm. Acetabular bone and soft tissues were segmented. Bony features were used to register the two background images, using Simpleware ScanIP 7.0 (Synopsys), to the same position and orientation (volume difference < 5%). Acetabular soft tissues displacements were measured by tracking the same points at the tissue edges on the two acetabular masks, along with difference in bone position as an additional error assessment. The use of radiopaque solution provided a clear contrast allowing separation of the femoral and acetabular soft tissues in the loaded image. The image registration process resulted in a difference in bone position in the areas of interest equivalent to image resolution (0.3 mm, a mean of 3 repeats by same user). A labral tip displacement of 1.7 mm and a cartilage thickness change from 1.5 mm unloaded to 0.9 mm loaded, were recorded. The combination of contrast enhancement, registration and focused local measurement was precise enough to reduce bone alignment error to that of image resolution and reveal local soft tissue displacements. These measurement methods can be used to develop models of soft tissues properties and behaviour, and therapy for hip tissue damage at early stage may be reviewed and optimised.
Initial performance of sutured quadriceps tendon (QT) ACL graft constructs is not well studied in human tissue and the results of animal tissue testing may not extend to the human model. Two common methods of preserving human tissue are to freeze the specimens immediately after death or embalm with formalin solution. The purpose of this study is to compare elongations and loads in biomechanical testing of fresh-frozen to that of embalmed quadriceps tendon-suture constructs. Twenty QT grafts were harvested from human cadaver specimens, 10 fresh-frozen and 10 embalmed. The grafts were prepared with the modified Prusik knot using a No.2 FiberWire (Arthrex, Naples, FL), mounted in a materials testing machine (ElectroPuls E10000, Instron, Norwood, MA) and subjected to tensile loading based on an established protocol. Each tendon was preconditioned with 3 cycles of 0–100N at 1Hz followed by a constant load of 50N for 1 minute and 200 cycles from 50–200N at 1Hz and then loaded to failure at a displacement rate of 20mm/min. Load and displacement data for each tendon-suture construct was recorded.Abstract
Objectives
Methods
ACL graft-suture fixation can be constructed with needle or needleless techniques. Needleless techniques have advantages of decreased injury, preparation time and cost. The Nice Knot (NK) is common among upper extremity procedures; however, its efficacy in ACL reconstruction relative to other needleless methods is not well known. The purpose of this study was to biomechanically compare quadriceps tendon (QT) grafts prepared with the NK versus the modified Prusik Knot (PK). Twenty QT grafts were harvested from 10 embalmed human cadaver specimens. 10 were prepared with the PK and 10 with the NK using a No.2 FiberWire (Arthrex, Naples, FL). The prepared grafts were then mounted in a materials testing machine (ElectroPuls E10000, Instron, Norwood, MA) and subjected to tensile loading based on an established protocol. Each tendon-suture specimen was preconditioned with 3 cycles of 0–100N at 1Hz followed by a constant load of 50N for 1 minute and cyclic loading of 200 cycles from 50–200N at 1Hz and then loaded to failure at a displacement rate of 20mm/min. Load and displacement data for each tendon-suture construct was recorded by the testing machine.Abstract
Objectives
Methods
Conventional marker based optical motion capture (mocap) methods for estimating the position and orientation (pose) of anatomical segments use assumptions that anatomical segments are rigid bodies and the position of tracking markers is invariant relative to bones. Soft tissue artefact (STA) is the error in pose estimation due to markers secured to soft tissue that moves relative to bones. STA is a major source of pose estimation error and is most prevalent when markers are placed over joints. Mocap and bi-plane videoradiography data were recorded synchronously while three individuals walked on a treadmill. For all three, pose of the thigh and shank, and movement of markers relative to the bones, were determined from the videoradiography data (DSX, C-Motion). Independently, pose of thighs and shanks was estimated using mocap data (Visual3D, C-Motion). Our measures of error in the mocap pose estimation were the relative thigh and shank translations. X-ray data from two subjects were used to generate a regression model for the antero/posterior movement of the lateral knee marker against internal/external hip rotation. The mocap translation errors of the third subject, attributed to STA of the knee marker, were 15.6mm and 32.0mm respectively. The pose of the third subject was then estimated using a probabilistic algorithm incorporating our regression model. Mocap translation errors were reduced to 10.6mm (thigh) and 4.4mm (shank). The results from these data suggest that errors in pose estimation due to STA may possibly be reduced via the application of algorithms based on probabilistic inference to mocap data.
The current ‘gold’ standard surgical intervention for critical size bone defect repair involves autologous bone grafting, that risks inadequate graft containment and soft tissue invasion. Here, a new regenerative strategy was explored, that uses a barrier membrane to contain bone graft. The membrane is designed to prevent soft tissue ingrowth, whilst supporting periosteal regrowth, an important component to bone regeneration. This study shows the development of a collagen-based barrier membrane supportive of periosteal-derived mesenchymal stem cell (P-MSC) growth. P-MSC-homing barrier membranes were successfully obtained with nonaligned fibres, via free-surface electrospinning using type I collagen and poly(E-caprolactone) in 1,1,1,3,3,3-Hexafluoro-2-propanol. Introduction of collagen in the electrospinning mixture was correlated with decreased mean fibre diameter (d: 319 nm) and pore size (p: 0.2–0.6 μm), with respect to collagen-free membrane controls (d: 372 nm; p: 1–2 μm). Consequently, as the average MSC diameter is 20 μm, this provides convincing evidence of the creation of a MSC containment membrane. SEM-EDX confirmed Nitrogen and therefore collagen fibre localisation. Quantification of collagen content, using Picro Sirius Red dye, showed a 50% reduction after 24 hours (PBS, 37 °C), followed by a drop to 25% at week 3. The collagen-based membrane has a significantly higher elastic modulus compared to collagen-free control membranes. P-MSCs attached and proliferated when grown onto collagen-based membranes, imaged using confocal microscopy over 3 weeks. A modified transwell cell migration assay was developed, using MINUSHEET® tissue carriers to assess barrier functionality. In line with the matrix architecture, the collagen-based membrane proved to prevent cell migration (via confocal microscopy) in comparison to the migration facilitating positive control. The aforementioned results obtained at molecular, cellular and macroscopic scales, highlight the applicability of this barrier membrane in a new ‘hybrid graft’ regenerative approach for the surgical treatment of critical size bone defects.
To determine if systemic toxicity occurs after the use of antibiotic loaded calcium sulphate in the treatment (1) of bone and soft tissue infection. Although antibiotic loaded calcium sulphate is increasingly used for the local treatment of bone and soft tissue infection, there is little data to demonstrate that systemic levels generated by local release of antibiotics are safe. For this reason, we routinely assay systemic levels of antibiotics. Patients with osteomyelitis or soft tissue infection underwent surgical debridement and lavage of the infected tissue in routine fashion. Patients with osteomyelitis were graded with the Cierny-Mader classification. Bone cavities and soft tissue dead spaces were packed with antibiotic loaded calcium sulphate (10–40 cc) loaded with Vancomycin (1–4 g) and Gentamicin (240–960 mg). The wounds were closed over the antibiotic loaded calcium sulphate. Patients underwent serial assays of Vancomycin and Gentamicin levels on the day of surgery and the first two post-operative days. Renal function was also measured.Aim
Methods
The aim of this randomised, controlled
Recent National Institute for Health and Care Excellence (NICE) guidance has advised against the continued use of the Thompson implant when performing hip hemiarthroplasty and recommended surgeons consider using the anterolateral surgical approach over a posterior approach. Our objective was to review outcomes from a consecutive series of Thompson hip hemiarthroplasty procedures performed in our unit and to identify any factors predicting the risk of complications. 807 Thompson hip hemiarthroplasty cases performed between April 2008 and November 2013 were reviewed. 721 (89.3%) were cemented and 86 (10.7%) uncemented. 575 (71.3%) were performed in female patients. The anterolateral approach was performed in 753 (93.3%) and the posterior approach with enhanced soft tissue repair in 54 (6.7%). Overall, there were 23 dislocations (2.9%). Dislocation following the posterior approach occurred in 13.0% (7 of 54) in comparison to 2.1% (16 of 753) with the anterolateral approach (odds ratio (OR) 8.5 (95% CI 2.8 to 26.3) p < 0.001). Surgeon grade and patient history of cognitive impairment did not have a significant impact on dislocation rate. Patients were discharged home in 459 cases (56.9%), to a care home or other hospital in 273 cases (33.8%). 51.8% (338 of 653) returned home within 30 days. 75 died during their admission (9.3%). 30-day mortality was 7.1% and 1-year mortality was 16.6%. Intraoperative fracture occurred in 15 cases (1.9%) of which 14 were cemented. Superficial or deep infection occurred in 33 cases (4.1%). We recommend against the continued use of the posterior approach in hip hemiarthroplasty, as enhanced soft tissue repair did not reduce dislocation rates to an acceptable level. Our findings, however, demonstrate satisfactory results for patients treated with the Thompson hip hemiarthroplasty performed through an anterolateral approach. We suggest that the continued use of the Thompson implant in a carefully selected patient cohort is justifiable.
Orthopaedic impaction-instruments are used to drive implants into the bone of the patient. Pre-clinical experimental testing protocols and computer models of those are used to assess robustness and functional efficiency of such instruments. This generally involves impaction of the instrument mounted on a substrate that should represent the mechanics of the patient. In this study, the effects of the substrate on stressing of the impaction-instruments were investigated using dynamic finite element analysis. Model results were compared with experimental data from lab protocols, which have been derived to recreate the mechanics of cadaveric implantations, which represent clinical conditions. FEA models of selected experimental protocols were created in which a simplified instrument was impacted on substrates with varying material properties and boundary conditions. After impaction, the instrument settled into a modal vibration which then decayed over time. The resulting axial strain data from the computational model was compared to strain-gauge data collected from experimental measurements. Strain signal amplitude, frequency and decay were compared. The damping-ratio was derived from the decay of the strain signal. The computational model slightly over-predicted the initial experimental strain amplitudes in all cases, but the frequency of the cyclic strain signals matched. However, the model underestimated the experimentally measured rate of signal decay. Inclusion of implant seating and
A Morel-Lavallee lesion (MLL) is a benign cystic lesion that occurs due to injury to the
Osteomyelitis is an inflammatory condition accompanied by the destruction of bone and caused by an infecting microorganism. Open contaminated fractures can lead to the development of osteomyelitis of the fractured bone in 3-25% of cases, depending on fracture type, degree of
This study aims to create a novel computational workflow for frontal plane laxity evaluation which combines a rigid body knee joint model with a non-linear implicit finite-element model wherein collateral ligaments are anisotropically modelled using subject-specific, experimentally calibrated Holzpfel-Gasser-Ogden (HGO) models. The framework was developed based on CT and MRI data of three cadaveric post-TKA knees. Bones were segmented from CT-scans and modelled as rigid bodies in a multibody dynamics simulation software (MSC Adams/view, MSC Software, USA). Medial collateral and lateral collateral ligaments were segmented based on MRI-scans and are modelled as finite elements using the HGO model in Abaqus (Simulia, USA). All specimens were submitted varus/valgus loading (0-10Nm) while being rigidly fixed on a testing bench to prevent knee flexion. In subsequent computer simulations of the experimental testing, rigid bodies kinematics and the associated