Advertisement for orthosearch.org.uk
Results 1 - 20 of 27
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_17 | Pages 11 - 11
1 Apr 2013
Annetts S Coales P Koelmel S Kloni M van Deursen R
Full Access

Background. There is limited research investigating the effects of the Saddle Chair on spinal angles and it has not been determined if there is a difference between a self –selected comfortable posture (SSCP) and a standardised ergonomic posture (SEP). Purpose of Study. Investigate if there is a difference in head tilt (HT); neck angle (NA); cervico-thoracic angle (CTA); thoracic angle (TA); lumbar angle (LA) and pelvic tilt (PT) when sitting on a saddle chair and adopting a SSCP compared with a SEP. Methods. Experimental same subject design (n = 13) using healthy subjects conducting a typing task sitting on a Saddle Chair. A standardised introduction was given to the adjustment possibilities of the saddle chair, the hydraulic table, the computer screen and the screen riser. Subjects were asked to adopt a SSCP and to carry out a split-screen typing task. Further standardised instructions were then given and adjustments made to achieve a SEP and the task repeated. Analysis was via digital photographs analysed within MatLab. Wilcoxon Signed Rank Tests were conducted for each spinal variable. Results. There was only a statistically significant difference in NA and CTA (p ≤ 0.05) when comparing the two postures. The mean neck angle was 3.61° less in the SEP and the mean CTA 1.09° less in the SEP. Conclusion. These preliminary finding suggest that in order to adopt a more upright posture in relation to NA and CTA users need to be provided with standardised ergonomic instructions, rather than adopt a SSCP. No Conflict of interest. No funding obtained. This abstract has not been previously published in whole or substantial part nor has it been presented previously at a national meeting


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 134 - 134
4 Apr 2023
Arrowsmith C Alfakir A Burns D Razmjou H Hardisty M Whyne C
Full Access

Physiotherapy is a critical element in successful conservative management of low back pain (LBP). The aim of this study was to develop and evaluate a system with wearable inertial sensors to objectively detect sitting postures and performance of unsupervised exercises containing movement in multiple planes (flexion, extension, rotation). A set of 8 inertial sensors were placed on 19 healthy adult subjects. Data was acquired as they performed 7 McKenzie low-back exercises and 3 sitting posture positions. This data was used to train two models (Random Forest (RF) and XGBoost (XGB)) using engineered time series features. In addition, a convolutional neural network (CNN) was trained directly on the time series data. A feature importance analysis was performed to identify sensor locations and channels that contributed most to the models. Finally, a subset of sensor locations and channels was included in a hyperparameter grid search to identify the optimal sensor configuration and the best performing algorithm(s) for exercise classification. Models were evaluated using F1-score in a 10-fold cross validation approach. The optimal hardware configuration was identified as a 3-sensor setup using lower back, left thigh, and right ankle sensors with acceleration, gyroscope, and magnetometer channels. The XBG model achieved the highest exercise (F1=0.94±0.03) and posture (F1=0.90±0.11) classification scores. The CNN achieved similar results with the same sensor locations, using only the accelerometer and gyroscope channels for exercise classification (F1=0.94±0.02) and the accelerometer channel alone for posture classification (F1=0.91±0.03). This study demonstrates the potential of a 3-sensor lower body wearable solution (e.g. smart pants) that can identify proper sitting postures and exercises in multiple planes, suitable for low back pain. This technology has the potential to improve the effectiveness of LBP rehabilitation by facilitating quantitative feedback, early problem diagnosis, and possible remote monitoring


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 93 - 93
11 Apr 2023
de Angelis N Beaule P Speirs A
Full Access

Femoro-acetabular impingement involves a deformity of the hip joint and is associated with hip osteoarthritis. Although 15% of the asymptomatic population exhibits a deformity, it is not clear who will develop symptoms. Current diagnostic imaging measures have either low specificity or low sensitivity and do not consider the dynamic nature of impingement during daily activities. The goal of this study is to determine stresses in the cartilage, subchondral bone and labrum of normal and impinging hips during activities such as walking and sitting down. Quantitative CT scans were obtained of a healthy Control and a participant with a symptomatic femoral cam deformity (‘Bump’). 3D models of the hip were created from automatic segmentation of CT scans. Cartilage layers were added so the articular surface was the mid-line of the joint. Finite element meshes were generated in each region. Bone elastic modulus was assigned element-by-element, calculated from CT intensity converted to bone mineral density using a calibration phantom. Cartilage was modelled as poroelastic, E=0.467 MPa, v=0.167, and permeability 3×10. -16. m. 4. /N s. The pelvis was fixed while rotations and contact forces from Bergmann et al. (2001) were applied to the femur over one load cycle for walking and sitting in a chair. All analyses were performed in FEBio. High shear stresses were seen near the acetabular cartilage-labrum junction in the Bump model, up to 0.12 MPa for walking and were much higher than in the Control. Patient-specific modelling can be used to assess contact and tissue stresses during different activities to better understand the risk of degeneration in individuals, especially for activities that involve high hip flexion. The high stresses at the cartilage labrum interface could explain so-called bucket-handle tears of the labrum


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 110 - 110
1 Dec 2020
Kabariti R Roach R
Full Access

Background. The current average tariff of a total knee replacement (TKR) is £5500. The approximate cost of each knee prosthesis is £2500. Therefore, length of patient stay (LOS) and the cost of patient rehabilitation influence the total costs significantly. Previous studies have shown a mean LOS of between 5 and 9.4 days for patients undergoing primary unilateral TKR but none looked at the factors influencing length of stay following bilateral primary total knee replacements (BTKR) at the same sitting. Objectives. To identify significant factors that influence the LOS following BTKR at the same sitting in a single centre in the UK. Methods. This was a retrospective single-centre study performed at the Princess Royal Hospital which performed a total of 25 BTKR. Surgical and patient factors that may influence LOS were recorded and analysed. Results. The mean LOS was 10 days with a median of 9 days. 64% were discharged within 10 days. Those staying longer were classified as long stayers. Being a female (0.65, p< 0.05), having a higher Charlson index (0.68, p< 0.05) and having a post-operative blood transfusion (0.59, p< 0.05) were the only significant factors that influenced LOS. Post-operative acute kidney injury (AKI), underlying diagnosis such as rheumatoid arthritis, BMI, age, worse pre-operative oxford knee scores and type of implant did not influence LOS. Conclusion. Factors influencing LOS following BTKR shown in our study seems to be the same as those influencing unilateral TKRs as identified in the literature. This should be taken into consideration when comparing unilateral versus bilateral TKR results as well as when planning a local arthroplasty service


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 115 - 115
1 Dec 2020
Kabariti R Roach R
Full Access

Background. Post-operative acute kidney injury is significant complication following surgery. Patients who develop AKI have an increased risk for progression into chronic kidney disease, end-stage renal failure and increased mortality risk. The patient outcomes following total knee replacement (TKR), who develop AKI has been a topic of interest in recent years as it may have patient and medicolegal implications. Nevertheless, there are no studies looking at the incidence, risk factors and outcomes of AKI following bilateral TKRs at the same sitting. Objectives. To determine the incidence, risk factors and outcomes of post-operative AKI following bilateral TKRs surgery at the same sitting. Methods. This was a retrospective single-centre study performed at the Princess Royal Hospital, which performed a total of 25 BTKR. The incidence, Surgical and patient risk factors were recorded and analysed. Results. The incidence of AKI as defined by NICE guidelines following bilateral TKRs was 20%. 16% (4 patients) had stage 1 and 4% (1 patient) had stage 2 AKI. The mean change in Creatinine between pre- and post-operative blood tests was +19μmol/L. There was a strong significant correlation between CKD and AKI (r=0.75, P<0.05). Furthermore, a moderate correlation was found between higher BMI and pre-operative Charlson index and AKI. AKI did not have an effect on the length of inpatient stay with the mean inpatient length of stay for patients who had an AKI of 10 days compared to 11days for those who did not. All AKIs were resolved within 72 hours. There were no associated mortalities with AKI. Conclusion. The incidence of AKI following bilateral TKR was 20%. Pre-operative chronic kidney disease as well as having a higher BMI were identified as risk factors for developing AKI. Pre-operative CKD optimisation and careful adequate hydration intra-operatively should be considered in these patients. AKI was not associated with an increased length of stay or mortality in our study


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 13 - 13
1 Dec 2022
Barone A Cofano E Zappia A Natale M Gasparini G Mercurio M Familiari F
Full Access

The risk of falls in patients undergoing orthopedic procedures is particularly significant in terms of health and socioeconomic effects. The literature analyzed closely this risk following procedures performed on the lower limb, but the implications following procedures on the upper limb remain to be investigated. Interestingly, it is not clear whether the increased risk of falling in patients undergoing shoulder surgery is due to preexisting risk factors at surgery or postoperative risk factors, such as anesthesiologic effects, opioid medications used for pain control, or brace use. Only one prospective study examined gait and fall risk in patients using a shoulder abduction brace (SAB) after shoulder surgery, revealing that the brace adversely affected gait kinematics with an increase in the risk of falls. The main purpose of the study was to investigate the influence of SAB on gait parameters in patients undergoing shoulder surgery. Patients undergoing elective shoulder surgery (arthroscopic rotator cuff repair, reverse total shoulder arthroplasty, and Latarjet procedure), who used a 15° SAB in the postoperative period, were included. Conversely, patients age > 65 years old, with impaired lower extremity function (e.g., fracture sequelae, dysmorphism, severe osteo-articular pathology), central and peripheral nervous system pathologies, and cardiac/respiratory/vascular insufficiency were excluded. Participants underwent kinematic analysis at four different assessment times: preoperative (T0), 24 hours after surgery (T1), 1 week after surgery (T2), and 1 week after SAB removal (T3). The tests used for kinematic assessment were the Timed Up and Go (TUG) and the 10-meter test (10MWT), both of which examine functional mobility. Agility and balance were assessed by a TUG test (transitions from sitting to standing and vice versa, walking phase, turn-around), while gait (test time, cadence, speed, and pelvic symmetry) was evaluated by the 10MWT. Gait and functional mobility parameters during 10MWT and TUG tests were assessed using the BTS G-Walk sensor (G-Sensor 2). One-way ANOVA for repeated measures was conducted to detect the effects of SAB on gait parameters and functional mobility over time. Statistical analysis was performed with IBM®SPSS statistics software version 23.0 (SPSS Inc., Chicago, IL, USA), with the significant level set at p<0.05. 83% of the participants had surgery on the right upper limb. A main effect of time for the time of execution (duration) (p=0.01, η2=0.148), speed (p<0.01, η2=0.136), cadence (p<0.01, η2=0.129) and propulsion-right (R) (p<0.05, η2=0.105) and left (L) (p<0.01, η2=0.155) in the 10MWT was found. In the 10MWT, the running time at T1 (9.6±1.6s) was found to be significantly longer than at T2 (9.1±1.3s, p<0.05) and at T3 (9.0±1.3s, p=0.02). Cadence at T1 (109.7±10.9steps/min) was significantly lower than at T2 (114.3 ±9.3steps/min, p<0.01) and T3 (114.3±9.3steps/min, p=0.02). Velocity at T1 (1.1±0.31m/s) was significantly lower than at T2 (1.2± 0.21m/s, p<0.05). No difference was found in the pelvis symmetry index. No significant differences were found during the TUG test except for the final rotation phase with T2 value significantly greater than T3 (1.6±0.4s vs 1.4±0.3s, p<0.05). No statistically significant differences were found between T0 and T2 and between T0 and T3 in any of the parameters analyzed. Propulsion-R was significantly higher at T3 than T1 (p<0.01), whereas propulsion-L was significantly lower at T1 than T0 (p<0.05) and significantly higher at T2 and T3 than T1 (p<0.01). Specifically, the final turning phase was significantly higher at T2 than T3 (p<0.01); no significant differences were found for the duration, sit to stand, mid-turning and stand to sit phases. The results demonstrated that the use of the abduction brace affects functional mobility 24 hours after shoulder surgery but no effects were reported at longer term observations


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 22 - 22
1 Nov 2021
Belvedere C Leardini A Gill R Ruggeri M Fabbro GD Grassi A Durante S Zaffagnini S
Full Access

Introduction and Objective. Medial Knee Osteoarthritis (MKO) is associated with abnormal knee varism, this resulting in altered locomotion and abnormal loading at tibio-femoral condylar contacts. To prevent end-stage MKO, medial compartment decompression is selectively considered and, when required, executed via High Tibial Osteotomy (HTO). This is expected to restore normal knee alignment, load distribution and locomotion. In biomechanics, HTO efficacy may be investigated by a thorough analysis of the ground reaction forces (GRF), whose orientation with respect to patient-specific knee morphology should reflect knee misalignment. Although multi-instrumental assessments are feasible, a customized combination of medical imaging and gait analysis (GA), including GRF data, rarely is considered. The aim of this study was to report an original methodology merging Computed-Tomography (CT) with GA and GFR data in order to depict a realistic patient-specific representation of the knee loading status during motion before and after HTO. Materials and Methods. 25 MKO-affected patients were selected for HTO. All patients received pre-operative clinical scoring, and radiological/instrumental assessments; so far, these were also executed post-operatively at 6-month follow-up on 7 of these patients. State-of-the-art GA was performed during walking and more demanding motor tasks, like squatting, stair-climbing/descending, and chair-rising/sitting. An 8-camera motion capture system, combined with wireless electromyography, and force platforms for GRF tracking, was used together with an own established protocol. This marker-set was enlarged with 4 additional skin-based non-collinear markers, attached around the tibial-plateau rim. While still wearing these markers, all analyzed patients received full lower-limb X-ray in standing posture a CT scan of the knee in weight-bearing Subsequently, relevant DICOMs were segmented to reconstruct the morphological models of the proximal tibia and the additional reference markers, for a robust anatomical reference frame to be defined on the tibia. These marker trajectories during motion were then registered to the corresponding from CT-based 3D reconstruction. Relevant registration matrices then were used to report GRF data on the reconstructed tibial model. Intersection paths of GRF vectors with respect to the tibial-plateau plane were calculated, together with their centroids. Results. Pre-operative clinical and radiological scoring confirmed MKO and associated abnormal varism. The morphological characterization of GRF was successfully achieved pre- and post- HTO on patient-specific tibial plateau. Pre-operative GFR patterns and peaks, including those related to knee joint moments, were observed medially on the knee, as expected. In post-HTO, these resulted lateralized and much closer to the tibial plateau spine, as desired. In detail, when post- is compared to pre-op, the difference of the centroids were, on average, 54.6±18.1 mm (min÷max: 36.7÷72.8 mm) more lateral during walking and 52.5±28.5 mm (24.7÷87.6 mm) during stair climbing. When reported in % of the tibial plateau width, these values became 69.2±20.1 (46.1÷81.4) and 78.1±30.1 (43.4÷98.0), respectively. Post-op also clinical scores and GA revealed a considerable overall improvement, especially in functional performances. Conclusions. The reported novel approach allows a combination of motion data, including GFR, and tibial-plateau morphology. Relevant pre- and post-operative routine application offer a quantification of the effect of the original deformity and executed joint realignment, and an assistance for surgical planning in case of HTO as well as ideally in other orthopedic treatments


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 50 - 50
1 Mar 2021
Favier C McGregor A Phillips A
Full Access

Abstract. OBJECTIVES. Bone health deterioration is a major public health issue. General guidelines for the limitation of bone loss prescribe a healthy lifestyle and a minimum level of physical activity. However, there is no specific recommendation regarding targeted activities that can effectively maintain lumbar spine bone health. To provide a better understanding of such influencing activities, a new predictive modelling framework was developed to study bone remodelling under various loading conditions. METHODS. The approach is based on a full-body subject-specific musculoskeletal model [1] combined with structural finite element models of the lumbar vertebrae. Using activities recorded with the subject, musculoskeletal simulations provide physiological loading conditions to the finite element models which simulate bone remodelling using a strain-driven optimisation algorithm [2]. With a combination of daily living activities representative of a healthy lifestyle including locomotion activities (walking, stair ascent and descent, sitting down and standing up) and spine-focused activities involving twisting and reaching, this modelling framework generates a healthy bone architecture in the lumbar vertebrae. The influence of spine-focused tasks was studied by adapting healthy vertebrae to an altered loading scenario where only locomotion activities were performed. RESULTS. The spine-focused activities were responsible for 57% of the overall bone mechanical stimulus of the five lumbar vertebrae. Cortical bone maintenance was more influenced by these activities in the superior vertebrae than in the inferior ones, with a stimulus degradation of 74% in L1 against 24% in L5 when adapted to the altered loading scenario. Trabecular bone stimulus degradation varied between 53% and 68%. CONCLUSION. The study suggests that locomotion activities are insufficient to maintain lumbar spine bone health. When appropriate, larger spine movements should be recommended as part of the minimum daily physical activities. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 321 - 321
1 Jul 2014
Kang X Wilson D Hodgson A
Full Access

Summary. We found good to excellent reproducibility of in vivo hip joint angle measurements during repeated sitting when derived from registering low-resolution Open MRI imagesets with a reference high-resolution conventional MRI scan, despite only moderate similarity of the segmented volumes. Keywords: hip, kinematics, MRI, femoroacetabular impingement, repeatability. Introduction. Femoroacetabular impingement (FAI) is a mechanical hip disorder caused by an abnormal bony contact between the femur and acetabulum. Open MRIs can enable studies of FAI under weightbearing, but the resolution of such scans is comparatively low, so it is useful to obtain high resolution (HR) reference scans from a conventional MRI and register lower resolution (LR) open MRI images to the HR images. The purpose of this study was to establish the degree of correspondence between the segmented volumes from the two types of scanner and to estimate the repeatability of joint angle measurements. Patients and Methods. Three healthy subjects were scanned in a lying position to obtain high resolution (HR) MRI images of the pelvis, hip and knee. The same subjects were scanned four times in a sitting position in a 0.5T open MRI scanner to obtain corresponding low resolution (LR) images of the hip joint. Between sittings, subjects rose and sat again, and during each sitting, a block was inserted and removed from underneath their foot. Volumetric models of the femur and acetabulum were manually segmented from the HR and LR MRI images. The LR (sitting) models were registered to the HR (supine) models using an intensity-based rigid registration method and the degree of overlap and the femoropelvic joint angles computed. Analysis is complete for two of the three subjects (results for the third are pending). Results. The overlap between the LR and HR imagesets is reasonable in most scan slices - per-slice Dice Similarity Coefficients (DSCs) are typically around 85%, although DSCs near the edges of volumes can sometimes drop to about 75%. Nonetheless, the resulting registrations are relatively insensitive to these moderate discrepancies. For the two subjects whose data has been analyzed to date, the femoral angle relative to the scanner is quite repeatable (SD < 0.9° for the flexion angle under each block condition). The mean femoral flexion angle change between block conditions was also comparatively consistent (SD 1.7° & 2.2° for the two subjects), but most of the other hip joint angles (and changes between the up and down conditions) were more variable (SDs up to ∼5.7°). Discussion/Conclusions. Although there are moderate discrepancies between the LR and HR segmented volumes, the resulting registrations and estimated joint angles are relatively consistent (SDs under 2°). The larger degree of pelvic flexion variability under repositioning indicates that it may be challenging for subjects to reproduce a desired posture on different occasions. Our results could not be directly compared with the only other studies we are aware of using open MRI to investigate FAI because neither combined LR and HR images


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 89 - 89
1 Apr 2018
Stoffels A Lipperts M van Hemert W Rijkers K Grimm B
Full Access

Introduction. Limited physical activity (PA) is one indication for orthopaedic intervention and restoration of PA a treatment goal. However, the objective assessment of PA is not routinely performed and in particular the effect of spinal pathology on PA is hardly known. It is the purpose of this study using wearable accelerometers to measure if, by how much and in what manner spinal stenosis affects PA compared to age-matched healthy controls. Patients & Methods. Nine patients (m/f= 5/4, avg. age: 67.4 ±7.7 years, avg. BMI: 29.2 ±3.5) diagnosed with spinal stenosis but without decompressive surgery or other musculoskeletal complaints were measured. These patients were compared to 28 age-matched healthy controls (m/f= 17/11, avg. age: 67.4 ±7.6 years, avg. BMI: 25.3±2.9). PA was measured using a wearable accelerometer (GCDC X8M-3) worn during waking hours on the lateral side of the right leg for 4 consecutive days. Data was analyzed using previously validated activity classification algorithms in MATLAB to identify the type, duration and event counts of postures or PA like standing, sitting, walking or cycling. In addition, VAS pain and OSWESTRY scores were taken. Groups were compared using the t-test or Mann-Whitney U-test where applicable. Correlations between PA and clinical scores were tested using Pearson”s r. Results. Spinal stenosis patients showed much lower PA than healthy controls regarding all parameters like e.g. daily step count (2946 vs 8039, −63%, p<0.01) or the relative daily time-on-feet (%) (8.6% vs 28.3%, −70%, p<0.01) which is matched with increased sitting durations (80.3% vs 58.8%, p<0.01). Also qualitative parameters such as walking cadence was reduced in stenosis patients (83.7 vs 97.8 steps/min). With stenosis no patient ever walked >1000 steps without interruption. Also the number of walking bouts between 250–1000 steps was 4.5 times lower than in healthy controls (p<0.01). When the relative distribution of walking bout length was calculated, it became visible that stenosis patients showed more short walking bouts of 10–50 steps (p<0.05). There were no strong and significant correlations between the clinical scores and PA parameters. Discussion & Conclusions. Spinal stenosis greatly reduced physical activity to levels below WHO guidelines (e.g. <5000 steps= sedentary lifestyle) where the risk for general health (overall mortality), cardiovascular or endocrinological health is significantly increased. Activity levels are lower than reported for end-stage hip or knee osteoarthritis. Therefore, spinal stenosis patients should not only receive pain medication, but be made aware of their limited PA and its detrimental health effects, participate in activation programs, or be considered for surgical intervention. The absence of long walking bouts and the relatively more frequent short walking bouts seem indicative of intermittent claudication as typical in spinal stenosis


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 79 - 79
1 Nov 2018
Scott A
Full Access

I still remember as a green 16-year-old being completely seduced by Newman's portrait of a university – the ideal of a liberal education. I was completely charmed not only by Newman's seductive prose – but by the humanising ideals of the effects of an excellent education. The picture was compelling and inspirational to the daughter of a small farmer whose parents were forced to leave school at 12 years of age to go and earn a living. I was sitting in the “lap of luxury” in a boarding school for girls, whose excellent principal generated a huge respect for, and absolute belief in, the right to and the ability to gain from a rigorous and serious education – which for me at that time in the 1970s extended at least to the end of secondary schooling – a luxury no one in my family had access to in the previous generation. What are universities for? Many authors have considered this issue since Newman's time – in recent times for example Boyd (1979), Graham (2005), Collini (2012). They all, in different ways suggests the need not only to respond to societal / economic needs, but also the need for a more balanced, holistic conception of university activity. Leaders of universities in the 21. st. century must try to articulate this, seek greater understanding of it. We must lobby government for greater recognition, understanding and support for the university's role not only for the present but also for the future. Contingency, vulnerability, adaptability, recognising the provisional nature of knowledge (and control); the caring versus the careless – all of this implies the need for diversity of disciplines, gender and experiences among university leadership in both the national and the international arena


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 25 - 25
1 Jan 2019
Jones P Woodgate S Williams D Biggs P Nicholas K Button K Corcoran P Holt C
Full Access

Whilst home-based exercise rehabilitation plays a key role in determining patient outcomes following orthopaedic intervention (e.g. total knee replacement), it is very challenging for clinicians to objectively monitor patient progress, attribute functional improvement (or lack of) to adherence/non-adherence and ultimately prescribe personalised interventions. This research aimed to identify whether 4 knee rehabilitation exercises could be objectively distinguished from each other using lower body inertial measurement units (IMUs) and principle components analysis (PCA) in the hope to facilitate objective home monitoring of exercise rehabilitation. 5 healthy participants performed 4 repetitions of 4 exercises (knee flexion in sitting, knee extension, single leg step down and sit to stand) whilst wearing lower body IMU sensors (Xsens, Holland; sampling at 60 Hz). Anthropometric measurements and a static calibration were combined to create the biomechanical model, with 3D hip, knee and ankle angles computed using the Euler sequence ZXY. PCA was performed on time normalised (101 points) 3D joint angle data which reduced all joint angle waveforms into new uncorrelated PCs via an orthogonal transformation. Scatterplots of PC1 versus PC2 were used to visually inspect for clustering between the PC values for the 4 exercises. A one-way ANOVA was performed on the first 3 PC values for the 9 variables under analysis. Games-Howell post hoc tests identified variables that were significantly different between exercises. All exercises were clearly distinguishable using the PC scatterplot representing hip flexion-extension waveforms. ANOVA results revealed that PC1 for the knee flexion angle waveform was the only PC value statistically different across all exercises. Findings demonstrate clear potential to objectively distinguish between different knee rehabilitation exercises using IMU sensors and PCA. Flexion-extension angles at the hip and knee appear most suited for accurate separation, which will be further investigated on patient data and additional exercises


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 111 - 111
1 Apr 2017
Van Onsem S Lambrecht D Verstraete M Van Der Straeten C Victor J
Full Access

Introduction. Better functional outcomes, lower pain and better stability have been reported with knee designs which restore physiological knee kinematics. Also the ability of the TKA design to properly restore the physiological femoral rollback during knee flexion, has shown to be correlated with better restoration of the flexor/extensor mechanism, which is fundamental to the function of the human knee. The purpose of the study is to compare the kinematics of three different TKA designs, by evaluating knee motion during Activities of Daily Living. The second goal is to see if there is a correlation between the TKA kinematics and the patient reported outcomes. Methods. Ten patients of each design, who are at least 6 months after their Total Knee Replacement, will be included in this study. Seven satisfied and 3 dissatisfied patients will be selected for each design. In this study 5 different movements will be analysed: flexion/extension; Sitting on and rising from a chair, Stair climbing, descending stairs, Flexion and extension open chain and squatting. These movements will be captured with a fluoroscope. The 2D images that are obtained, will be matched with the 3D implants. This 3D image will be processed with custom-made software to be able to analyse the movement. Tibio-femoral contact points of the medial and lateral condyles, tibio-femoral axial rotation, determination of the pivot-point will be analysed and described. After this analysis, a correlation between the kinematics and the KOOS and KSS will be investigated. Results. (The results of the first six patients are shown, more patients are currently being tested.) The average weight-bearing ROM of the implants is 108.48° +/− 19.68°


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 85 - 85
1 Apr 2018
Bolink S van Laarhoven S Lipperts M Grimm B
Full Access

Introduction. Following primary total knee arthroplasty (TKA), patients experience pain relief and report improved physical function and activity. However, there is paucity of evidence that patients are truly more active in daily life after TKA. The aims of this study were: 1) to prospectively measure physical activity with a wearable motion sensor before and after TKA; 2) to compare patient-reported levels of physical activity with objectively assessed levels of physical activity before and after TKA; 3) to investigate whether differences in physical activity after TKA are related to levels of physical function. Methods. 22 patients (age=66.6 ±9.3yrs; m/f= 12/11; BMI= 30.6 ±6.1) undergoing primary TKA (Vanguard, ZimmerBiomet), were measured preoperatively and 1–3 years postoperatively. Patient-reported outcome measures (PROMs) included KOOS-PS and SQUASH for assessment of perceived physical function and activity resp. Physical activity was assessed during 4 consecutive days in patients” home environments while wearing an accelerometer-based activity monitor (AM) at the thigh. All data were analysed using semi-automated algorithms in Matlab. AM-derived parameters included walking time (s), sitting time (s) standing time (s), sit-to-stand transfers, step count, walking bouts and walking cadence (steps/min). Objective physical function was assessed by motion analysis of gait, sit-to-stand (STS) transfers and block step-up (BS) transfers using a single inertial measurement unit (IMU) worn at the pelvis. IMU-based motion analysis was only performed postoperatively. Statistical comparisons were performed with SPSS and a per-protocol analysis was applied to present the results at follow-up. Results. Data were available for 17 of 22 patients at follow-up. PROMs demonstrated significant improvement of perceived physical function (KOOS-PS=68±21 vs. 34±26; p<0.001) and physical activity (SQUASH=2584 ±1945 vs. 3038 ±2228; p<0.001) following TKA. AM-based parameters of physical activity demonstrated no significant differences between pre- and postoperative quantitative outcomes. Only the qualitative outcome of walking cadence significantly changed after TKA (81.41 ±10.86 (steps/min) vs. 94.24 ±7.20 resp.; p<0.001). There were moderate correlations between self-reported and objectively assessed levels of physical activity after TKA (Pearson”s r=0.36–0.43; p<0.05). Outcomes of physical activity after TKA were moderately correlated to IMU-based functional outcome measures (Pearson”s r = 0.31 – 0.48; p<0.05). Conclusion. 1–3 years after TKA, patients demonstrate improved function. However, the self-perceived higher activity level (+18%) after TKA is not supported by any objective data obtained by wearable motion sensors such as steps, transfers or time-on-feet. This may have implications for general health and requires further investigation into patient communication, expectation management or motivational intervention


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 63 - 63
1 May 2017
Ahmadinezhad S Lipperts M Senden R Heyligers I Grimm B
Full Access

Background. In total knee arthroplasty (TKA), patient reported outcome on pain, function or satisfaction fails to differentiate treatment options. Activity, a consequence of pain-free, well functioning TKA and a satisfied patient, may be a discriminative surrogate metric, especially when objectively measured. Methods. Habitual activity was measured in TKA patients (n=32, F/M=20/12, age: 72 ±8yrs) at long-term follow-up (9 ±1yrs) and compared to healthy, age matched controls (n=32, F/M=20/12, age: 71 ±9yrs) using a popular questionnaire (SQUASH) and accelerometry. A small 3D accelerometer (X16-mini, GCD Dataconcepts) was worn for 4 successive days during waking hours at the non-affected lateral upper leg. Data was analysed using validated algorithms (Matlab) counting and timing walking bouts, steps, sitting periods and transfers. Stair climbing events or similar activities such as walking steep slopes were classified using the higher mean hip flexion angle as a feature. Results. SQUASH scores were not sign. different between TKA (mean ±SD: 4551 ±3426) and controls (3659 ±2720, p>0.1). With accelerometry, differences between patients and controls (Median [IQR]) increased from −13% for Time Standing (3.7h [2.6–5.1] vs 4.3h [2.9–5.0], p=0.69), to −26% for Daily Steps (4939 [3796–7910] vs 6731 [5539–8270], p=0.019] and −31% for Sit-Stand Transfers (31.2 [22.1–37.0] vs 45.3 [34.9–58.4], p>0.001). For stair-up events, the difference increased to −74% (6.2 [2.8–22.4] vs 23.9 [10.8–39.1], p>0.001). Conclusions. Self-report activity could not discriminate between patients and controls. With accelerometry, sign. differences increased with rising levels of effort and difficulty. In TKA, walking alone, either by accelerometry or as the major component of self-report may not serve as powerful outcome measure in orthopaedics were energy expenditure from walking is less relevant than functionally demanding but rarer tasks such as transfer or stair climbing


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 62 - 62
1 May 2017
Lipperts M Senden R Heyligers I Grimm B
Full Access

Background. The goal of total hip arthroplasty (THA) is to reduce pain, restore function but also activity levels for general health benefits or social participation. Thus evaluating THA patient activity can be important for diagnosis, indication, outcome assessment or biofeedback. Methods. Physical activity (PA) of n=100 primary THA patients (age at surgery 63 ±8yrs; 49M/51F; 170 ±8cm, 79.8 ±14.0kg) was measured at 8 ±3yrs follow-up. A small 3D accelerometer was worn for 4 successive days during waking hours at the non-affected lateral upper leg. Data was analysed using validated algorithms (Matlab) producing quantitative (e.g. #steps, #transfers, #walking bouts) and qualitative (e.g. cadence, temporal distribution of events) activity parameters. An age matched healthy control group (n=40, 69 ±8yrs, 22M/18F) served as reference. Results. Daily steps were only 13% lower (n.s) for patients (avg. ±SD: 5989 ±3127) than controls (6890 ±2803). However, the Nr. of walking bouts (187 ±85 vs 223 ±78, −16%) and sit-stand transfers (35 ±14 vs 48 ±15, −27%) were sign. less in patients (p<0.05, Mann-Whitney). Patients showed equal amounts of walking bouts in medium duration (30-60s, 1–5min) but sign. less (−25%) short (<10s, 10–30s) and less (−43%) long events (>5min). This corresponds with sign. less (−32%) short sitting periods (>10min) in patients. Also cadence was sign. lower in patients (93.8 ±11.7 vs 98.9 ±7.3 steps/min). Conclusions. PA varies widely in patients with a substantial proportion (35%) being more active than average controls. Thus, THA must not per se reduce or limit PA. Only 17% of controls and 11% of patients reached the WHO target (10,000 steps/day) suggesting that the THA related drop in activity may inflate the risks for cardiovascular, metabolic or mental disease associated with low activity. Patients avoided short and long activities, both associated with effort. Targeted interventions may address this behaviour


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 9 - 9
1 Jan 2017
Pegg E Gill H MacLeod A
Full Access

Femoral head collapse is a possible complication after surgical treatment of femoral neck fractures. The purpose of this study was to examine whether implantation of a Sliding Hip Screw (SHS) or an X-Bolt could increase the risk of femoral head collapse. Similar to traditional hip screws, the X-Bolt is implanted through the femoral neck; however, it uses an expanding cross-shape to improve rotational stability. The risk of collapse was investigated alongside patient factors, such as osteonecrosis. This numerical study assessed the risk of femoral head collapse using linear eigenvalue buckling (an established method [1]), and also from the maximum von Mises stress within the cortical bone. The femoral head was loaded using the pressures reported by Yoshida et al. for a patient sitting down (reported to put the femoral head at greatest risk of collapse [2]), with a peak pressure of 9.4 MPa and an average pressure of 1.59 MPa. The femur was fixed in all degrees of freedom at a plane through the femoral neck. The X-Bolt and SHS were implanted in accordance with the operative techniques. The femoral head and implants were meshed with quadratic tetrahedral elements, and cortical bone was meshed with triangular thin shell elements. A converged mesh seeding density of 1.2 mm was used. All models were create and solved using ABAQUS finite element software (version 6.12, Simulia, Dassault Systèmes, France). The influence of implant type and presence was examined alongside a variety of patient factors:. Osteonecrosis, modelled as a cone of bone of varying angle, and varying modulus values. Cortical thinning. Reduced cortical modulus. Femoral head size. Twenty-two finite element models were run for each implant condition (intact; implanted with the X-Bolt; implanted with a SHS), resulting in a total of 66 models. The finite element models were validated using experimental tests performed on five 4. th. generation composite Sawbones femurs (Malmö, Sweden), and verified against previously published results [1]. No significant difference was found between the X-Bolt and the SHS, for either critical buckling pressure (p=0.964), or the maximum von Mises stress (p=0.274), indicating no difference in the risk of femoral head collapse. The maximum von Mises stress (and therefore the risk of collapse) within the cortical bone was significantly higher for the intact femoral head compared to both implants (X-Bolt: p=0.048, SHS: p=0.002). Of the factors examined, necrosis of the femoral head caused the greatest increase in risk. The study by Volokh et al. [1] concluded that deterioration of the cancellous bone underneath the cortical shell can greatly increase the risk of femoral head collapse, and the results of the present study support this finding. Interestingly the presence of either an X-Bolt or SHS implant appeared to reduce the risk of femoral head collapse


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_4 | Pages 33 - 33
1 Jan 2013
Annetts S Coales P Colville R Mistry D Moles K Thomas B van Deursen R
Full Access

Background. Office seating includes a variety of chair styles. There is limited research investigating their effects on spinal angles. Purpose of Study. Investigate effects of active (Swopper and Vari-Kneeler), and static (Saddle and a Standard Office) chairs on lumbo-pelvic and cervical regions. Methods. Experimental same subject design (n = 14) using healthy subjects conducting a typing task sitting on the four chair types. Analysis was via digital photographs analysed within MatLab. The chair position was self selected for comfort and the work-station standardised. A repeated measures ANOVA (with Bonferroni corrections) was conducted. Results. Results are ranked most to least with standard deviations. Paired symbols indicate statistical significance (p<0.05). Conclusion. High standard deviations are attributable to the self selected seating position resulting in a variety of positions being adopted. The Vari-Kneeler chair produced the “best” posture for the lumbo-pelvic region; the Vari-Kneeler and office chairs were “best” for the cervical region. Conflicts of interest. None. Sources of funding. None


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 69 - 69
1 May 2012
Panchani S Melling D Moorehead J Scott S
Full Access

AIM. When a hip is replaced using a posterior surgical approach, some of the external rotator muscles are divided. The aim of this study was to assess if this surgery has a long term affect on hip rotation during activities of daily living. METHODS. An electromagnetic tracking system was used to assess hip movements during the following activities:-. Activity 1. Picking an object of the floor in a straight leg stance. Activity 2. Picking an object of the floor when knees are flexed. Activity 3. Sitting on a chair. Activity 4. Putting on socks, seated, with the trunk flexed forward. Activity 5. Putting on socks, seated, with the legs crossed. Activity 6. Climbing stairs. Measurements were taken from 10 subjects with bilaterally normal hips, 10 patients with a large head hip replacement, 10 patients with a resurfacing head and 10 patients with a small head hip replacement. All the hip replacement patients were at least 6 months post-op, with an asymptomatic contra-lateral native hip for comparison. Sensors were attached over the iliac crest and the mid-shaft of the lateral thigh. Data was collected as each activity was repeated 3 times. The tracker recorded hip rotation at 10 hertz, with an accuracy of 0.15 degree. RESULTS. For each of the activities the Normal, Large, Resurfacing and Small Head mean external rotations were:-. Activity 1. -2.9,-6.9,9.1,-0.7. Activity 2. -8.1,-6.5,-7.0,2.0. Activity 3. -15.5,-15.6,-11.7,-15.6. Activity 4. 2.2,-10.8,5.3,-3.4. Activity 5. 33.1,24.6,22.5,23.7. Activity 6. -14.6,-11.5,-13.3,-6.5. The only movement that required substantial external rotation was activity 5 (Socks - legs crossed). For this activity the Resurfacing and Small head hips had significantly less rotation than the normal group (P = 0.01 & 0.03, respectively). A t-test comparing the normal group with the large head group had a boarder line significance level of P=0.07. Significant differences were also found for the following comparisons:- Activity 1 -Normal Vs Resurfacing, Activity 4 - Normal Vs Large head and Activity 6 - Normal Vs Small head. Discussion. The results for activity 5 show that patients with a Resurfacing or Small head hip have significantly less external rotation than the normal group


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 333 - 333
1 Jul 2014
Senden R Heyligers I Grimm B
Full Access

Summary. Physical activity monitoring using a single accelerometer works reliably in clinical practice and is of added value as clinical outcome tool, as it provides objective and more precise information about a patient's activity compared to currently used questionnaires. Introduction. Standard clinical outcome tools do not comply with the new generation of patients who are younger and more active. To capture the high functional demands of these patients, current outcome scales have been optimised (e.g. New-Knee Society Score: New-KSS), new outcome scales have been developed (e.g. Knee disability and Osteoarthritis Outcome score: KOOS). Also objective measurement tools (e.g. activity monitors) have become increasingly popular. This study evaluates the pre- and postoperative TKA status of patients using such optimised and new outcome tools. Patients and Methods. Physical activity of 18 preoperative (68 ± 6yrs) and 16 postoperative (72 ± 7yrs, follow up range 9–10 yrs) TKA patients was assessed using a most recommended patient reported questionnaire, SQUASH (high value=more active) and a body-fixed 3D-accelerometer based activity monitor (AM). The AM was worn for 4–7 successive days at the lateral side of the nonaffected upper leg. Activity parameters (e.g. # steps, # transfers, # walking bouts of short/long duration, cadence) were derived using validated algorithms. Function was measured using patient reported questionnaires: KOOS-PS (range 0–100=worse) and New-KSS (higher score=better). Independent t-test, Mann-Whitney test and Pearson's r were used to compare groups and to investigate correlations (p<0.05). Results. All AMs and questionnaires were returned (response rate 100%) and showed similar or higher completion rates for the AM (100%) than questionnaires (range 82–100%). At 10yrs follow-up, the function of TKA patients was significantly improved with regards to preoperative showing lower KOOS-PS and higher New-KSS subscores. Also physical activity was higher at 10yrs showing significantly more steps/day (+39%). Other activity parameters like walking bouts and transfers were also higher in the postoperative group (resp.8% and 21%), but not significantly. Most walking bouts were short taking 10–30s (pre: 63%, post: 59% of the bouts) and consisting of 10–15 steps (pre: 78%, post: 75% of the bouts). The only correlation found between activity and functional outcomes was between AM data (amount steps, sitting, walking time) and the New-KSS Function walking & standing subscale (r-range 0.37–0.54). No correlation was found between AM data and SQUASH. Moderate to high correlations were found between functional outcomes (KOOS-PS vs. New-KSS, r-range −0.56 – −0.81). Discussion/Conclusion. At 10yr follow up, TKA patients continue to have higher functional scores and also maintain higher activity levels than preoperative, as is mainly shown in steps/day. The fact that only the New-KSS Function Walking & Standing subscale correlated with AM data indicates that function and activity are two widely independent outcome dimensions. This suggests that patients are active largely independent of their functional limitations (e.g. high activity, worse KOOS). The lack of correlation between objectively measured and patient reported physical activity indicates patients are less reliable in estimating their actual activity. The correlations between functional outcomes indicate redundancy. AM meets and exceeds response and completion rates of questionnaires. AM seems to be more objective, precise and sensitive to measure physical activity than questionnaires and adds a largely independent outcome dimension to clinical assessments