Advertisement for orthosearch.org.uk
Results 1 - 20 of 77
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 21 - 21
1 Dec 2021
Langley B Page R Whelton C Chalmers O Morrison S Cramp M Dey P Board T
Full Access

Abstract. Objectives. The objective of this proof of concept study was to explore whether some total hip arthroplasty (THA) patients with well-functioning implants achieve normal sagittal plane hip kinematics during walking gait. Methods. Sagittal plane hip kinematics were recorded in eleven people with well-functioning THA (71 ± 8 years, Oxford Hip Score = 46 ± 3) and ten healthy controls (61 ± 5 years) using a three-dimensional motion capture system as they walked over-ground at a self-selected velocity. THA patients were classified as high- or low-functioning (HF and LF, respectively) depending on whether the mean absolute difference between their sagittal plane hip kinematics was within one standard deviation of the control group (5.4°) or not. Hedge's g effect size was used to compare the magnitude of the difference from the control group for the HF and LF THA groups. Results. Five THA patients were identified as HF and 6 as LF. The mean absolute difference in sagittal plane hip kinematics between the THA groups and the control group was on average 6.2° larger for the LF THA patients compared to the HF, with this difference associated with a large effect size (g = 1.84). Conclusions. The findings of this study challenge the findings of previous work which suggests THA patients do not achieve normal sagittal plane hip kinematics. Five patients were classified as HR and achieved motion patterns that were on average within the variance of the asymptomatic control group, suggesting normative sagittal plane hip kinematics. Understanding why some THA patients achieve motion patterns more comparable to healthy controls than others would help to develop means of maximising functional recovery, and potentially enhance both patient quality of life and implant survivorship through more normal loading of the implant


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 6 | Pages 868 - 872
1 Jun 2005
Metcalfe AJ Saleh M Yang L

Biomechanical studies involving all-wire and hybrid types of circular frame have shown that oblique tibial fractures remain unstable when they are loaded. We have assessed a range of techniques for enhancing the fixation of these fractures. Eight models were constructed using Sawbones tibiae and standard Sheffield ring fixators, to which six additional fixation techniques were applied sequentially.

The major component of displacement was shear along the obliquity of the fracture. This was the most sensitive to any change in the method of fixation. All additional fixation systems were found to reduce shear movement significantly, the most effective being push-pull wires and arched wires with a three-hole bend. Less effective systems included an additional half pin and arched wires with a shallower arc. Angled pins were more effective at reducing shear than transverse pins.

The choice of additional fixation should be made after consideration of both the amount of stability required and the practicalities of applying the method to a particular fracture.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 53 - 53
1 Nov 2021
ten Heggeler R Schröder F de Graaf F Fluit R Becea D Verdonschot N Hoogeslag R
Full Access

Introduction and Objective. After anterior cruciate ligament reconstruction one of the risk factors for graft (re-)rupture is an increased posterior tibial slope (PTS). The current treatment for PTS is a high tibial osteotomy (HTO). This is a free-hand method, with 1 degree of tibial slope correction considered to be equal to 1 or even 1.67 mm of the anterior wedge resection. Error rates in the frontal plane reported in literature vary from 1 – 8.6 degrees, and in the sagittal plane outcomes in a range of 2 – 8 degrees are reported when planned on PTSs of 3 – 5 degrees. Therefore, the free-hand method is considered to have limited accuracy. It is expected that HTO becomes more accurate with patient specific saw guides (PSGs), with an accuracy margin reported in literature of 2 degrees. This proof of concept porcine cadaver case study aimed to investigate whether the use of PSGs improves the accuracy of HTO to less than 2 degrees. Secondly, the reproducibility of tibial slope measurement was evaluated. Materials and Methods. Preoperative MRI images of porcine cadaver knees (n = 3) were used to create 3D anatomical bone models (Mimics, Materialise, Belgium). These 3D models were subsequently used to develop PSGs (3-Matic, Materialise, Belgium) to correct all tibias for 3 degrees PTS and 4 degrees varus. The PSG mediated HTOs were performed by an experienced orthopaedic surgeon, after which postoperative MRI images were obtained. 3D anatomical models of postoperative tibias were created, and tibial slopes were assessed on both pre- and postoperative tibias. The tibial slope was defined as the angle between the mechanical axis and 3D tibial reference plane in the frontal and sagittal plane. The accuracy of the PSG mediated HTO (median and range) was defined as the difference in all possible combinations of the preoperatively planned and postoperatively obtained tibial slopes. To ensure reproducibility, the pre- and postoperative tibial slopes were measured thrice by one observer. The intra-class correlation coefficients (ICCs) were subsequently calculated to assess the intra-rater reliability (SPSS, IBM Corp., Armonk, N.Y., USA). Results. An accuracy within 2 degrees was achieved in all three cases. The median and range in accuracy for each specimen were +0.46 (−0.57 – 1.45), +0.60 (−1.07 – 1.00), and +0.45 (−0.16 – 0.71) degrees in the frontal plane, and −0.45 (−1.97 – 1.22), −0.80 (−2.42 – 1.77), and 0.00 (−2.19 – 1.93) degrees in the sagittal plane. The pre- and postoperatively planned tibial slopes in the frontal and sagittal plane were measured with a good up to excellent reproducibility. The ICCs of the preoperative planned tibial slopes were 0.82 (95% CI, 0.11 – 1.0), and 0.77 (95% CI, 0.17 – 1.0) for the frontal and sagittal plane, respectively. Postoperative, the ICC for the frontal plane was 0.92 (95% CI, 0.43 – 1.0), and 0.67 (95% CI, −0.06 – 0.99) for the sagittal plane. Conclusions. This proof of concept porcine case study showed an accuracy for the PSG mediated HTO within 2 degrees for each specimen. Moreover, the tibial slopes were measured with a good up to excellent reproducibility. Therefore, the PSG mediated HTO seems to be accurate and might be better than the current used free-hand HTO method. These results offer perspective for implementation of PSG mediated HTO to correct PTS and metaphyseal varus


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 41 - 41
4 Apr 2023
Benca E Zderic I van Knegsel K Caspar J Hirtler L Fuchssteiner C Strassl A Gueorguiev B Widhalm H Windhager R Varga P
Full Access

Odontoid fracture of the second cervical vertebra (C2) is the most common spinal fracture type in elderly patients. However, very little is known about the biomechanical fracture mechanisms, but could play a role in fracture prevention and treatment. This study aimed to investigate the biomechanical competence and fracture characteristics of the odontoid process. A total of 42 human C2 specimens (14 female and 28 male, 71.5 ± 6.5 years) were scanned via quantitative computed tomography, divided in 6 groups (n = 7) and subjected to combined quasi-static loading at a rate of 0.1 mm/s until fracturing at inclinations of −15°, 0° and 15° in sagittal plane, and −50° and 0° in transverse plane. Bone mineral density (BMD), specimen height, fusion state of the ossification centers, stiffness, yield load, ultimate load, and fracture type according to Anderson and d'Alonzo were assessed. While the lowest values for stiffness, yield, and ultimate load were observed at load inclination of 15° in sagittal plane, no statistically significant differences could be observed among the six groups (p = 0.235, p = 0.646, and p = 0.505, respectively). Evaluating specimens with only clearly distinguishable fusion of the ossification centers (n = 26) reveled even less differences among the groups for all mechanical parameters. BMD was positively correlated with yield load (R² = 0.350, p < 0.001), and ultimate load (R² = 0.955, p < 0.001), but not with stiffness (p = 0.070). Type III was the most common fracture type (23.5%). These biomechanical outcomes indicate that load direction plays a subordinate role in traumatic fractures of the odontoid process in contrast to BMD which is a strong determinant of stiffness and strength. Thus, odontoid fractures appear to result from an interaction between load magnitude and bone quality


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 57 - 57
1 Dec 2020
Ateş YB Çullu E Çobanoğlu M
Full Access

Aim. To investigate the effect of the eight plate position in sagittal plane on tibial slope in temporary epiphysiodesis technique applied to the proximal tibia and whether there is a rebound effect after removing the plate. Method. Forty New Zealand rabbits (6 weeks old) were divided into four groups. In all groups, two 1.3 mm mini plates and cortical screws implantation were placed on both medial and lateral side of the proximal epiphysis of the right tibia. In Group 1 and 3, the plates were placed on anterior of the proximal tibial anatomical axis in the sagittal plane, and placed posteriorly in Group 2 and 4. The left tibia was examined as control in all groups. Group 1 and Group 2 were sacrificed after four week-follow-up. In Group 3 and Group 4, the implants were removed four weeks after index surgery and the rabbits were followed four more weeks to investigate the rebound effect. The tibial slope was measured on lateral X-rays every two weeks. Both medial and lateral plateau slopes were evaluated on photos of the dissected tibia. Results. In Group 1, right MTPA (medial tibial plateau angle) and left MTPA, right LTPA (lateral tibial plateau angle) and left LTPA, and right 4wTPPA (the tibial proximal posterior angle at 4th week) and left 4wTPPA values were compared with each other. There was a significant difference in MTPA, LTPA, and 4wTPPA in Group 1 (p: 0.003, 0.006, 0.004). In Group 1, the medial and lateral slope significantly decreased after 4 weeks. There was no significant difference in MTPA, LTP and 4wTPPA measurements in Group 2 (p= 0.719, 0.306, 0.446, respectively). In Group 2, the slope did not change in four weeks. There was a significant difference in MTPA, LTPA, 4wTPPA, and 8wTPPA (tibial proximal posterior angle at 8th week) in Group 3 (p= 0.005, 0.002, <0.001, <0.001, respectively). In Group 3, the slope decreased at 4th week and remained stabile during the next four week-follow up and no rebound effect was observed. There was no significant difference in MTPA, LTPA, 4wTPPA, and 8wTPPA measurements in Group 4 (p= 0.791, 0.116, 0.232, 0.924), respectively. In group 4, slope did not change at 4th week of index surgery and no rebound effect was observed in the next four week-follow up. Conclusion. If eight plates were placed on anterior of lateral proximal tibia axis on both medial and lateral side, the tibial slope would reduce, and remain stabile after implant removal. Care should be taken to place the plates on the line of proximal tibial axis in sagittal plane in temporary epiphysiodesis technique performed due to angular knee deformities. Changing the slope due to plate placement can be used as a secondary gain for patients who will benefit from slope change, such as adolescent ACL surgery


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 54 - 54
2 Jan 2024
İlicepinar Ö Imir M Cengiz B Gürses S Menderes Y Turhan E Dönmez G Korkusuz F
Full Access

Hop tests are used to determine return to sports after ACL reconstruction. They mostly measure distance and symmetry but do not assess kinematics and kinetics. Recently, biomechanical evaluations have been incorporated into these functional jump tests for the better assessment of return to sport. We assessed the sagittal plane range of motion (ROM) of the knee, the deviation axis of rotation (DAOR), and the vertical ground reaction force (vGRF) normalized to body weight in nine healthy participants during the single leg (SLH) and crossover hop tests (COHT). Participants' leg lengths were measured. Jumping distances were marked in the test area as being 4/5 of the leg length. Four sensors were placed on the thighs, the legs and the feet. These body parts were handled as a single rigid body. Eight 480 Hz cameras were used to capture the movements of these rigid bodies. vGRF at landing were measured using a force plate (Bertec, Inc, USA). The ROM of the knee joint and the DAOR were obtained from kinematic data. Participants' joint kinematics metrics were similar in within-subjects statistical tests for SLH and COHT. We therefore asked whether the repeated vGRF normalized to body weight will be similar in both legs during these jumps. Joint kinematics metrics however were different in between subjects indicating the existence of a personalized jumping strategy. These hop tests can be recorded at the beginning of the training season for each individual, which can establish a comparative evaluation database for prospective lower extremity injury recovery and return to sport after ACL injury


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 88 - 88
17 Apr 2023
Aljuaid M Alzahrani S Alzahrani A Filimban S Alghamdi N Alswat M
Full Access

Cervical spine facet tropism (CFT) defined as the facets’ joints angles difference between right and left sides of more than 7 degrees. This study aims to investigate the relationship between cervical sagittal alignment parameters and cervical spine facets’ tropism. A retrospective cross-sectional study carried out in a tertiary center where cervical spine magnetic resonance imaging (MRI) radiographs of patients in orthopedics/spine clincs were included. They had no history of spine fractures. Images’ reports were reviewed to exclude those with tumors in the c-spine. A total of 96 patients was included with 63% of them were females. The mean of age was 45.53± 12.82. C2-C7 cobb's angle (CA) and C2-C7 sagittal vertical axis (SVA) means were −2.85±10.68 and 1.51± 0.79, respectively. Facet tropism was found in 98% of the sample in at least one level on either axial or sagittal plane. Axial C 2–3 CFT and sagittal C4-5 were correlated with CA (r=0.246, P 0.043, r= −278, P 0.022), respectively. In addition, C2-C7 sagittal vertical axis (SVA) was moderately correlated with axial c2-3 FT (r= −0.330, P 0.006) Also, several significant correlations were detected in our model Cervical vertebral slopes and CFT at the related level. Nonetheless, high BMI was associated with multi-level and multiplane CFT with higher odd's ratios at the lower levels. This study shows that CFT at higher levels is correlated with increasing CA and decreasing SVA and at lower levels with decreasing CA. Obesity is a risk factor for CFT


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 71 - 71
11 Apr 2023
Pelegrinelli A Kowalski E Ryan N Dervin G Moura F Lamontagne M
Full Access

The study compared thigh-shank and shank-foot coordination during gait before and after total knee arthroplasty (TKA) with controls (CTRL). Twenty-seven patients (male=15/female=12; age=63.2±6.9 years) were evaluated one month prior to and twelve months after surgery, and compared to 27 controls (male=14/female=13; age=62.2±4.3). The participants were outfitted with a full-body marker set. Gait speed (normalized by leg length) was calculated. The time series of the thigh, shank, and foot orientation in relation to the laboratory coordinate system were extracted. The coordination between the thigh-shank and shank-foot in the sagittal plane were calculated using a vector coding technique. The coupling angles were categorized into four coordination patterns. The stance phase was divided into thirds: early, mid, and late stance. The frequency of each pattern and gait speed were compared using a one-way ANOVA with a post-hoc Bonferroni correction. Walking speed and shank-foot coordination showed no differences between the groups. The thigh-shank showed differences. The pre-TKA group showed a more in-phase pattern compared to the CTRL group during early-stance. During mid-stance, the pre- and post-TKA presented a more in-phase pattern compared to the CTRL group. Regarding shank-foot coordination, the groups presented an in-phase and shank pattern, with more shank phase during mid-stance and more in-phase during late-stance. The pre-TKA group showed greater differences than the post-TKA compared to the controls. The more in-phase pattern in the pre- and post-TKA groups could relate to a reduced capacity for the thigh that leads the movement. During mid-stance in normal gait, the knee is extending, where the thigh and shank movements are in opposite directions. The in-phase results in the TKA groups indicate knee stiffness during the stance phase, which may relate to a muscular deficit or a gait strategy to reduce joint stress


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 90 - 90
14 Nov 2024
Halloum A Rahbek O Gholinezhad S Kold S Rasmussen J Rölfing JD Tirta M Abood AA
Full Access

Introduction. Current treatments of rotational deformities of long bones in children are osteotomies and fixations. In recent years, the use of guided growth for correction of rotational deformities has been reported in several pre-clinical and clinical studies. Various techniques have been used, and different adverse effects, like growth retardation and articular deformities, have been reported. We tested a novel plate concept intended for correction of rotational deformities of long bones by guided growth, with sliding screw holes to allow for longitudinal growth, in a porcine model. Method. Twelve, 12-week-old female porcines were included in the study. Surgery was performed on the left femur. The right femur was used as control. Plates were placed distally to induce external rotation, as longitudinal growth occurred. CT-scans of the femurs were processed to 3-D models and used for measuring rotation. Result. The plates rotated as intended in all 12 porcines. One porcine was excluded due to congenital deformity of the proximal part of the femurs. Two porcines had cut-out of the proximal screw on the lateral side, observed at the end of the intervention. These two porcines were included in the results. We observed a Δrotation of 5.7° ± 2° in external direction (CI: 3.7°– 7.7°). ΔFemur length was -0.4 cm [-0.7 cm – 0 cm] equal to 1.5% shortening of the operated femur. No significant difference was observed in coronal or sagittal plane. Conclusion. Significant external rotation was achieved with minimal effect on longitudinal growth. While the use of guided growth for correction of rotational deformities is already being used clinically, it is still to be considered an experimental procedure with sparse evidence. This study shows promising results for the feasibility of the method in a large animal model and is an important first step in validating the technique and detecting possible adverse effects, before future clinical studies


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 83 - 83
17 Apr 2023
Tawy G McNicholas M Biant L
Full Access

Total knee arthroplasty (TKA) aims to alleviate pain and restore joint biomechanics to an equivalent degree to age-matched peers. Zimmer Biomet's Nexgen TKA was the most common implant in the UK between 2003 and 2016. This study compared the biomechanical outcomes of the Nexgen implant against a cohort of healthy older adults to determine whether knee biomechanics is restored post-TKA. Patients with a primary Nexgen TKA and healthy adults >55 years old with no musculoskeletal deficits or diagnosis of arthritis were recruited locally. Eligible participants attended one research appointment. Bilateral knee range of motion (RoM) was assessed with a goniometer. A motorised arthrometer (GENOUROB) was then used to quantify the anterior-posterior laxity of each knee. Finally, gait patterns were analysed on a treadmill. An 8-camera Vicon motion capture system generated the biomechanical model. Preliminary statistical analyses were performed in SPSS (α = 0.05; required sample size for ongoing study: n=21 per group). The patient cohort (n=21) was older and had a greater BMI than the comparative group (n=13). Patients also had significantly poorer RoM than healthy older adults. However, there were no inter-group differences in knee laxity, walking speed or cadence. Gait kinematics were comparable in the sagittal plane during stance phase. Peak knee flexion during swing phase was lower in the patient group, however (49.0° vs 41.1°). Preliminary results suggest that knee laxity and some spatiotemporal and kinematic parameters of gait are restored in Nexgen TKA patients. While knee RoM remains significantly poorer in the patient cohort, an average RoM of >110° was achieved. This suggests the implant provides sufficient RoM for most activities of daily living. Further improvements to knee kinematics may necessitate additional rehabilitation. Future recruitment drives will concentrate on adults over the age of 70 for improved inter-group comparability


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 12 - 12
4 Apr 2023
Thewlis D Bahl J Grace T Smitham P Solomon B
Full Access

This study aimed to quantify self-reported outcomes and walking gait biomechanics in patients following primary and revision THA. The specific goals of this study were to investigate: (i) if primary and revision THA patients have comparable preoperative outcomes; and (2) if revision THA patients have worse postoperative outcomes than primary THA patients. Forty-three patients undergoing primary THA for osteoarthritis and 23 patients undergoing revision THA were recruited and followed longitudinally for their first 12 postoperative months. Reasons for revision were loosening (73%), dislocation (9%), and infection (18%). Patients completed the Hip dysfunction and Osteoarthritis Outcome Score (HOOS), and underwent gait analysis preoperatively, and at 3 and 12 months postoperatively. A 10 camera motion analysis system (V5 Vantage, Vicon, UK) recorded marker trajectories (100 Hz) during walking at self- selected speeds. A generic lower-body musculoskeletal model (Gait2392) was scaled using principal component analysis [1] and the inverse kinematics tool in Opensim 3.3 was used to compute joint angles for the lower limbs in the sagittal plane. Independent samples t-test were used to compare patient reported outcomes between the primary and revision groups at each timepoint. Statistical parametric mapping was used to compare gait patterns between the two groups at each timepoint. Preoperatively, patients undergoing primary THA reported significantly worse pain (p<0.001), symptoms (p<0.001), function (p<0.001), and quality of life (p=0.004). No differences were observed at 3 and 12 months postoperatively between patients who had received a primary or revision THA. The only observed difference in gait pattern was that patients with a revision THA had reduced hip extension at 3 months, but no differences were observed preoperatively and 12 months. Despite the suggestions in the literature that revision THA is bound to have worse outcomes compared to primary THA, we found no differences in in patient-reported outcomes and gait patterns at 12 months postoperatively. This suggests that it may be possible, in some circumstances, for patients following revision THA to achieve similar outcomes to their peers undergoing primary THA


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 9 - 9
1 Dec 2020
Meermans G Kats J Doorn JV Innman M Grammatopoulos G
Full Access

Introduction. In total hip arthroplasty, a high radiographic inclination angle (RI) of the acetabular component has been linked to short- and long-term complications. There are several factors that lead to RI outliers including cup version, pelvic orientation and angle of the cup introducer relative to the floor. The primary aim of this study was to analyse what increases the risk of having a cup with an RI outside the target zone when controlling cup orientation with a digital inclinometer. Methods. In this prospective study, we included 200 consecutive patients undergoing uncemented primary THA in the lateral decubitus position using a posterior approach. Preoperatively, the surgeon determined the target intraoperative inclination (IOI. target. ). The intra-operative inclination of the cup (IOI. cup. ) was measured with the aid of a digital inclinometer after seating of the acetabular component. Anteroposterior pelvic radiographs were made to measure the RI of the acetabular component. The target zones were defined as 30°-45° and 35°-45° of RI. The operative inclination relative to the sagittal plane of the pelvis (OI. math. ) was calculated based on the radiographic inclination and anteversion angle. The difference between two outcome measures was expressed as Δ. Results. The mean RI was 37.9° SD 4.7, there were 12 cases with RI outside the 30°– 45° zone (6%) and 53 outliers (26.5%) with RI outside the 35°-45° zone. The mean absolute ΔIOI. cup. -IOI. target. was 1.2° SD 1.0. The absolute ΔIOI. cup. -IOI. target. was less than 1° in 108 patients (54%), less than 2° in 160 patients (80%), less than 3° in 186 patients (93%), and in 14 patients (7%) the difference was 3°-5°. The mean pelvic motion (ΔOI. math. -IOI. cup. ) was 8.8° SD 3.9 (95% CI 8.2° to 9.3°). The absolute deviation from the mean ΔOI. math. -IOI. cup. , which corresponds with the amount of pelvic motion, was significantly higher in RI outliers compared with non-outliers for both the 30°-45° and 35°-45° inclination zone (7.4° SD 3.3 vs 2.8° SD 2.1 and 4.7° SD 2.8 vs 2.5° SD 2.0 respectively) (p<0.0001). A linear regression analysis demonstrated a strong correlation between ΔOI. math. -IOI. cup. and the RI of the cup (r. 2. =0.70; P<0.0001). A multiple regression was run to predict ΔOI. math. -IOI. cup. from gender, BMI, side and hip circumference. These variables statistically significantly predicted ΔOI. math. -OIa. cup. , F(4, 195) = 19,435, p<0.0001, R2 = 0.285, but only side (p=0.04) and hip circumference (p<0.0001) added statistically significantly to the prediction. Discussion and Conclusion. When using a digital inclinometer 94% of cups had a RI within a 30°-45° zone and 73.5% of cups within a 35°-45° zone using a predefined IOI. target. based on the patient's hip circumference. The difference between the IOI. target. and the IOI. cup. of the acetabular component was less than 3° in 93% and less than 5° in all patients signifying that the surgeons were able to implant the cup close to their chosen intra-operative orientation. Deviation from the mean ΔOI. math. -IOI. cup. was significantly bigger in the RI outliers indicating that RI outliers were caused by more or less than deviation of the sagittal plane of the pelvis at time of cup impaction


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 46 - 46
1 Dec 2021
Yarwood W Kumar KHS Ng KCG Khanduja V
Full Access

Abstract. Purpose. The aim of this study was to assess how biomechanical gait parameters (kinematics, kinetics, and muscle force estimations) differ between patients with camtype FAI and healthy controls, through a systematic search. Methods. A systematic review of the literature from PubMed, Scopus, and Medline and EMBASE via OVID SP was undertaken from inception to April 2020 using PRISMA guidelines. Studies that described kinematics, kinetics, and/or estimated muscle forces in cam-type FAI were identified and reviewed. Results. The search strategy identified 404 articles for evaluation. Removal of duplicates and screening of titles and abstracts resulted in full-text review of 37 articles with 12 meeting inclusion criteria. The 12 studies reported biomechanical data on a total of 173 cam-FAI (151 cam specific, 22 mixed type) patients and 177 healthy age, sex and BMI matched controls. Cam FAI patients had reduced hip sagittal plane ROM (Mean difference −3.00 0 [−4.10, −1.90], p<0.001), reduced hip peak extension angles (Mean Difference −2.05 0[−3.58, −0.53], p=0.008), reduced abduction angles in the terminal phase of stance, and reduced iliacus and psoas muscle force production in the terminal phase of stance compared to the control groups. Cam FAI cohorts walked at a slower speed compared to controls. Conclusions. In conclusion, patients with cam-type FAI exhibit altered sagittal and frontal plane kinematics as well as altered muscle force production during level gait compared to controls. These findings will help guide future research into gait alterations in FAI and how such alterations may contribute to pathological progression and furthermore, how such alterations can be modified for therapeutic benefit


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 124 - 124
1 Nov 2021
Mariscal G Camarena JN Galvañ T Barrios C Fernández P
Full Access

Introduction and Objective. The treatment of severe deformities often requiring aggressive techniques such as vertebral resection and osteotomies with high comorbidity. To mitigate this risk, several methods have been used to achieve a partial reduction of stiff curves. The objective of this study was to evaluate and quantify the effectiveness of the Perioperative Halo-Gravity Traction (HGT) in the Treatment of Severe Spinal Deformity in Children. Materials and Methods. A historical cohort of consecutive childs with severe spinal deformity who underwent to a perioperative HGT as a part of the treatment protocol. Minimum follow-up of 2 years. Demographic, clinical and radiological data, including time duration of perioperative HGT and Cobb angle in the coronal and sagittal plane. The radiological variables were measured before the placement of the halo, after placement of the halo, at the end of the period of traction, after surgery and in the final follow-up. Results. Seventeen males (57%) and twenty females (43%) were included in the final analysis. The mean age was 6.5 years (SD 4.8). The most frequent etiology for the spinal deformity was syndromic (13 patients). The average preoperative Cobb angle was 88º (range, 12–135). HGT was used in 17 cases prior to a primary surgery and in 20 cases prior to a revision surgery. After the HGT, an average correction of 34% of the deformity was achieved (p <0.05). After the surgery this correction improved. At 2-year follow-up there was a correction loss of 20% (p <0.05). There were 3 complications (8.1%): 2 pin infections and cervical subluxation. Conclusions. The application of HGT in cases of severe rigid deformity is useful allowing a correction of the preoperative deformity of 34%, facilitating surgery. Preoperative HGT seems to be a safe and effective intervention in pediatric patients with high degree deformity


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 20 - 20
1 Jan 2019
Khatib N Wilson C Mason DJ Holt CA
Full Access

Focal cartilage defects (FCDs) found in medial and lateral compartments of the knee are accompanied with patient-reported pain and loss of joint function. There is a deficit of evidence to explain why they occur. We hypothesise that aberrant knee joint loading may be partially responsible for FCD pathology, therefore this study aims to use 3-dimensional motion capture (MoCap) analysis methods to investigate differences in gait biomechanics of subjects with symptomatic FCDs. 11 subjects with Outerbridge grade II FCDs of the tibiofemoral joint (5 medial compartment, 6 lateral compartment) and 10 non-pathological controls underwent level-gait MoCap analysis using an infra-red camera (Qualisys) and force-plate (Bertec) passive marker system. 6-degree of freedom models were generated and used to calculate spatio-temporal measures, and frontal and sagittal plane knee, hip and ankle rotation and moment waveforms (Visual 3D). Principle component analysis (PCA) was used to score subjects based on common waveform features, and PC scores were tested for differences using Mann-Whitney tests (SPSS). No group differences were found in BMI, age or spatio-temporal measures. Medial-knee FCD subjects experienced higher (p=0.05) overall knee adduction moments (KAMs) compared to controls. Conversely, lateral-knee FCD subjects found lower (p=0.031) overall KAMs. Knee flexion and extension moments (KFMs/KEMs) were relatively reduced (p=0.013), but only in medial FCD subjects. This was accompanied by a significantly (p=0.019) higher knee flexion angle (KFA) during late-stance. KAMs have been shown to be predictive of frontal plane joint contact forces, and therefore our results may be reflective of FCD subjects overloading their respective diseased knee condyles. The differences in knee sagittal plane knee moments (KFMs/KEMs) and angles (KFA) seen in medial FCD subjects are suggestive of gait adaptations to pain. Overall these results suggest treatments of FCDs should consider offloading the respective affected condyle for better surgical outcomes


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 68 - 68
1 Dec 2021
Bowd J Williams D de Vecchis M Wilson C Elson D Whatling G Holt C
Full Access

Abstract. Objectives. Principal Component Analysis (PCA) is a useful method for analysing human motion data. The objective of this study was to use PCA to quantify the biggest variance in knee kinematics waveforms between a Non-Pathological (NP) group and individuals awaiting High Tibial Osteotomy (HTO) surgery. Methods. Thirty knees (29 participants) who were scheduled for HTO surgery were included in this study. Twenty-eight NP volunteers were recruited into the study. Human motion analysis was performed during level gait using a modified Cleveland marker set. Subjects walked at their self-selected speed for a minimum of 6 successful trials. Knee kinematics were calculated within Visual3D (C-Motion). The first three Principal Components (PCs) of each input variable were selected. Single-component reconstruction was performed alongside representative extremes of each PC to aid interpretation of the biomechanical feature reconstructed by each component. Results. Pre-operatively patient demographics included (age: 50.70 (8.71) years; height: 1.75 (.11) m; body mass: 90.57 (20.17) kg; mTFA: 7.75 (3.72) degrees varus; gait speed: 1.06 (0.23) m/s). The HTO cohort was significantly older and had a higher mass than the NP control participants. For knee kinematics the first three PCs explained 88%, 95% and 89% of the sagittal, frontal, and transverse planes, respectively. The main variances can be explained by sagittal plane magnitude differences, peak swing is associated with toe-off, a reduced knee flexion angle is associated with a longer time spent in stance, pre-HTO remain adducted during stance and pre-HTO patients remain more externally rotated during stance and latter part of swing. Conclusions. This study has introduced PCA in trying to better understand the biomechanical differences between a control group and a cohort with medial knee osteoarthritis varus deformity awaiting HTO. Further analysis will be undertaken using PCA comparing pre- and post-surgery which will be of importance in clinical decision making


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 111 - 111
1 Aug 2012
Holleyman R Gikas P Tyler P Coward P Carrington R Skinner J Briggs T Miles J
Full Access

It is known that excessive varus alignment of the femoral stem in total hip replacement (THR) creates a sub-optimal biomechanical environment which is associated with increased rates of revision surgery and component wear. Little is known regarding the effect of femoral stem alignment on patient functional outcome. Methods. Retrospective study of primary THR patients at the RNOH. Alignment of the femoral stem component in-situ was measured subjectively by a consultant musculoskeletal radiologist in both coronal and sagittal planes using post-operative anterior-posterior and lateral pelvic radiographs. Each THR was grouped into valgus, minor-valgus, neutral, minor-varus or varus coronal plane alignment and posterior, minor-posterior, neutral, minor-anterior or anterior sagittal plane alignment. Patient reported functional outcome was assessed by Oxford Hip Score (OHS) and WOMAC questionnaires. Data analysed using a linear regression model. Results. 90 THRs were studied in 87 patients (55 Female). Mean age at THR=62 (22-86). Mean follow-up=17 months (11-39 months). Median OHS=16, WOMAC=8. Coronal plane alignment of the femoral stem was not associated with any change in OHS (p>0.05) or WOMAC score (p>0.05). Sagittal plane alignment of the femoral stem was not associated with any change in OHS (p>0.05) or WOMAC score (p>0.05). Conclusion. Although it is known that alignment of the femoral stem on sagittal and coronal planes has a direct effect on survivorship of the prosthesis, our study does not demonstrate any relationship between femoral stem alignment and functional outcome in patients undergoing primary THR


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 96 - 96
1 Mar 2021
Abood A Rahbek O Moeller-Madsen B Kold S
Full Access

The use of retrograde femoral intramedullary nails in children for deformity correction is controversial. It is unknown if the injury to the central part of the growth plate results in premature bony union, leading to limb deformities or discrepancies. The aim of this study was to assess physeal healing and bone growth after insertion of a retrograde femoral nail thorough the centre of the physis in a skeletally immature experimental porcine model. Eleven immature pigs were included in the study. One leg was randomised for operation with a retrograde femoral nail (diameter 10.7 mm), whilst the non-operated contralateral remained as control. All nails were inserted centrally in coronal and sagittal plane under fluoroscopic guidance, and the nails spanned the physis. The nails were removed at 8 weeks. Both femora in all animals underwent MRI at baseline (pre-operatively), 8 weeks (after nail removal) and 16 weeks (before euthanasia). Femoral bone length was measured at 5 sites (anterior, posterior, central, lateral and medial) using 3d T1-weighted MRI. Growth was calculated after 8 weeks (growth with nail) and 16 weeks (growth without nail). Physeal cross-sectional area and percentage violated by the nail was determined on MRI. Operated side was compared to non-operated. Corresponding 95% confidence intervals were calculated. No differences in axial growth were observed between operated and non-operated sides. Mean growth difference was 0,61 mm [−0,78;2,01] whilst the nail was inserted into the bone and 0,72 mm [−1,04;1,65] after nail removal. No signs of angular bone deformities were found when comparing operated side to non-operated side. No premature bony healing at the physis occurred. Histology confirmed fibrous healing. Mean physeal violation was 5.72% [5.51; 5.93] by the femoral nail. The insertion of a retrograde femoral nail through the centre of an open physis might be a safe procedure with no subsequent growth arrest. However, experiments assessing the long term physeal healing and growth are needed


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 36 - 36
1 Mar 2021
Langley B Whelton C Page R Chalmers O Cramp M Morrison S Dey P Board T
Full Access

Abstract. Objectives. The objective of this study was to determine the kinematic factor(s) underlying the reduction in walking velocity displayed by total hip arthroplasty (THA) patients in comparison to healthy controls during walking gait. Methods. Eleven patients with well-functioning THA (71 ± 8 years, Oxford Hip Score = 46 ± 3) and ten healthy controls (61 ± 5 years) participated within this study. Sagittal plane lower limb kinematics were captured using a 10 camera Qualisys motion capture system, sampling at 200Hz, as participants walked overground at a self-selected pace. Bivariate linear regression was used to explore the relationship between walking velocity and a number of kinematic variables in a deterministic manner. Kinematic variables significantly associated with walking velocity were compared between THA and healthy groups utilising independent samples t-tests. Results. Peak hip extension was a significant (r2 = .36; p =.004) predictor of hip range of motion. Hip range of motion significantly (r. 2. = .61 p <.001) predicted stride length. Stride length was a significant (r2 = .75; p <.001) predictor of walking velocity. Peak hip extension and range of motion, and stride length were significantly (p ≤ .033) smaller for the THA group compared to the healthy control group. Conclusions. The deterministic model developed within this study links slower walking velocities to smaller peak hip extension, via reductions in hip range of motion and stride length. Stride length, hip range of motion and peak hip extension were all significantly lower for the THA group compared to the healthy group, despite patients reporting the implants to be well-functioning. Elucidating the mechanism(s) which restrict peak hip extension within THA populations is essential for maximising functional recovery and walking velocity post-operatively. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 13 - 13
1 Dec 2020
Erinç S Kemah B Öz T
Full Access

Introduction. This study aimed to compare MIPO and IMNr in the treatment of supracondylar femur fracture following TKA in respect of fracture healing, complications and functional results. Materials and Methods. A retrospective analysis was made of 32 supracondylar femur fractures classified according to the Rorabeck classification, comprising 20 cases treated with MIPO and 12 with IMNr. The two techniques were compared in respect of ROM, KSS, SF-12 scores, intraoperative blood loss, surgery time, and radiological examination findings. Results. No significant difference was determined between the two groups in respect of age, gender and fracture type, or in the median time to union (MIPO 4.3 months, IMNr 4.2 mths) (p >0.05). In the MIPO group, 2 patients had delayed union, so revision surgery was applied. The mean postoperative ROM was comparable between IMNr and MIPO (86.2 °vs 86 °, p > 0.05). The mean Knee Society Score (KSS) and SF-12 score did not differ between the IMN and MIPO groups. (p>0.05). Reduction quality in the sagittal plane was better in the MIPO group and no difference was determined in coronal alignment. Greater shortening of the lower extremity was seen in the IMNr group than in the MIPO group. (20.3 vs 9.3mm, p<0.05). Perioperative blood loss was greater (2 units vs.1.2 units) and mean operating time was longerin the MIPO group. (126.5 min vs 102.2 min, p<0.05). Conclusion. In patients with good bone stock, supracondylar femur fracture following TKA can be treated successfully with IMN or MIPO. IMN has the advantage of less blood loss and a shorter operating time. Reduction quality may be improved with the MIPO technique. Both surgery techniques can be successfully used by orthopaedic surgeons taking a case-by-case approach