Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 31 - 31
1 Jul 2020
Lo IKY Bois A LeBlanc J Woodmass J Kwong C Gusnowski E Lo A
Full Access

Rotator cuff disease encompasses a spectrum from partial to full thickness tears. Despite being 2–3 times more common than full–thickness tears, effective non-operative treatment for partial thickness tears has remained elusive. Platelet enriched plasma (PRP) has been proposed to enhance rotator cuff healing by enhancing the natural healing cascade. However, its utility in rotator cuff disease remains controversial. The purpose of this study was to compare the patient reported outcomes between PRP and corticosteroid injection in patients with symptomatic partial thickness tears. This double blind randomized controlled trial enrolled patients with symptomatic, partial thickness rotator cuff tears or rotator cuff tendinopathy proven on ultrasound or MRI. Patients were randomized to either corticosteroid or PRP ultrasound-guided injection of the affected shoulder. Patients completed patient reported outcomes at 6 weeks and 12 weeks. The primary outcome was Visual Analog Scale (VAS) pain scores. Secondary outcomes included the Western Ontario Rotator Cuff (WORC) index, American Shoulder and Elbow Surgeons (ASES) score, and failure of non-operative management as determined by consent for surgery or progression to operative intervention. Ninety-nine patients were enrolled in the study with equal demographics between the two groups. Taking into account pre-injection scores, patients with PRP injections demonstrated a statistically significant improvement in VAS scores compared to patients receiving corticosteroid injections at 12 weeks (p=0.045) but not at 6 weeks (p=0.704). There was no difference in other outcome measures or progression of the two groups to surgical intervention. The use of PRP in the management of partial thickness rotator cuff tears demonstrates significant improvement of pain scores at 12 week follow up compared to corticosteroid injections. However, this did not affect the rate of progression to surgical intervention. Continued study is required to determine the utility of PRP in this patient population


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 57 - 57
1 Jul 2020
Chevrier A Hurtig M Lacasse F Lavertu M Potter H Pownder S Rodeo S Buschmann M
Full Access

Surgical reattachment of torn rotator cuff tendons can lead to satisfactory clinical outcome but failures remain common. Ortho-R product is a freeze-dried formulation of chitosan (CS) that is solubilized in platelet-rich plasma (PRP) to form injectable implants. The purpose of the current pilot study was to determine Ortho-R implant acute residency, test safety of different implant doses, and assess efficacy over standard of care in a sheep model. The infraspinatus tendon (ISP) was detached and immediately repaired in 22 skeletally mature ewes. Repair was done with four suture anchors in a suture bridge configuration (n = 6 controls). Freeze-dried formulations containing 1% w/v chitosan (number average molar mass 35 kDa and degree of deacetylation 83%) with 1% w/v trehalose (as lyoprotectant) and 42.2 mM calcium chloride (as clot activator) were solubilized with autologous leukocyte-rich PRP and injected at the tendon-bone interface and on top of the repaired site (n = 6 with a 1 mL dose and n = 6 with a 2 mL dose). Acute implant residency was assessed histologically at 1 day (n = 2 with a 1 mL dose and n = 2 with a 2 mL dose). Outcome measures included MRI assessment at baseline, 6 weeks and 12 weeks, histopathology at 12 weeks and clinical pathology. MRI images and histological slides were scored by 2 blinded readers (veterinarian and human radiologist, and veterinarian pathologist) and averaged. The Generalized Linear Model task (SAS Enterprise Guide 7.1 and SAS 9.4) was used to compare the different groups with post-hoc analysis to test for pairwise differences. Ortho-R implants were detected near the enthesis, near the top of the anchors holes and at the surface of ISP tendon and muscle at 1 day. Numerous polymorphonuclear cells were recruited to the implant in the case of ISP tendon and muscle. On MRI, all repair sites were hyperintense compared to normal tendon at 6 weeks and only 1 out 18 repair sites was isointense at 12 weeks. The tendon repair site gap seen on MRI, which is the length of the hyperintense region between the greater tuberosity and tendon with normal signal intensity, was decreased by treatment with the 2 mL dose when compared to control at 12 weeks (p = 0.01). Histologically, none of the repair sites were structurally normal. A trend of improved structural organization of the tendon (p = 0.06) and improved structural appearance of the enthesis (p = 0.1) with 2 mL dose treatment compared to control was seen at 12 weeks. There was no treatment-specific effect on all standard safety outcome measures, which suggests high safety. Ortho-R implants (2 mL dose) modulated the rotator cuff healing processes in this large animal model. The promising MRI and histological findings may translate into improved mechanical performance, which will be assessed in a future study with a larger number of animals. This study provides preliminary evidence on the safety and efficacy of Ortho-R implants in a large animal model that could potentially be translated to a clinical setting


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 16 - 16
1 Nov 2016
Degen R Carbone A Carballo C Zong J Chen T Lebaschi A Ying L Deng X Rodeo S
Full Access

Bone marrow concentrates are being used to augment soft tissue healing. However, only 0.01% of these cells meet the criteria of a mesenchymal stem cell (MSC), which likely accounts for the variability in reported results. Previous studies using an established rat rotator cuff repair model have demonstrated that bone marrow-derived MSCs had no effect on healing. In this study we evaluated the effect of purified human MSCs on rotator cuff healing in an athymic rat model. Hypothesis: Purified human MSCs added to the repair site will improve biomechanical strength and fibrocartilage formation of the healing tendon. Fifty-two athymic rats underwent unilateral detachment and repair of the supraspinatus tendon with either fibrin glue (control) or fibrin glue with 106 hMSCs (experimental) applied at the repair site. Flow cytometry verified the stem cell phenotype of the cells as CD73+, CD90+, CD105+, CD14-, CD34- and CD45-. Rats were sacrificed at 2 and 4 weeks, with 10 used for biomechanical testing and 3 for histologic analysis from each group. Biomechanical testing revealed a significant increase in failure load (11.5±2.4N vs. 8.5±2.4N, p=0.002) and stiffness (7.1±1.2 N/mm vs. 5.7±2.1 N/mm, p0.17). These data demonstrate the potential for stem cells to augment tendon healing. This is the first study to use purified stem cells, rather than simple bone marrow concentrate. In the future, cell sorting techniques and culture expansion could be used to select and expand the small population of true stem cells in bone marrow. Furthermore, healing could potentially be improved with repeat cell injection at an additional post-operative time point


Bone & Joint Research
Vol. 3, Issue 6 | Pages 193 - 202
1 Jun 2014
Hast MW Zuskov A Soslowsky LJ

Tendinopathy is a debilitating musculoskeletal condition which can cause significant pain and lead to complete rupture of the tendon, which often requires surgical repair. Due in part to the large spectrum of tendon pathologies, these disorders continue to be a clinical challenge. Animal models are often used in this field of research as they offer an attractive framework to examine the cascade of processes that occur throughout both tendon pathology and repair. This review discusses the structural, mechanical, and biological changes that occur throughout tendon pathology in animal models, as well as strategies for the improvement of tendon healing.

Cite this article: Bone Joint Res 2014;3:193–202.