Rotator cuff disease encompasses a spectrum from partial to full thickness tears. Despite being 2–3 times more common than full–thickness tears, effective non-operative treatment for partial thickness tears has remained elusive. Platelet enriched plasma (PRP) has been proposed to enhance
Surgical reattachment of torn rotator cuff tendons can lead to satisfactory clinical outcome but failures remain common. Ortho-R product is a freeze-dried formulation of chitosan (CS) that is solubilized in platelet-rich plasma (PRP) to form injectable implants. The purpose of the current pilot study was to determine Ortho-R implant acute residency, test safety of different implant doses, and assess efficacy over standard of care in a sheep model. The infraspinatus tendon (ISP) was detached and immediately repaired in 22 skeletally mature ewes. Repair was done with four suture anchors in a suture bridge configuration (n = 6 controls). Freeze-dried formulations containing 1% w/v chitosan (number average molar mass 35 kDa and degree of deacetylation 83%) with 1% w/v trehalose (as lyoprotectant) and 42.2 mM calcium chloride (as clot activator) were solubilized with autologous leukocyte-rich PRP and injected at the tendon-bone interface and on top of the repaired site (n = 6 with a 1 mL dose and n = 6 with a 2 mL dose). Acute implant residency was assessed histologically at 1 day (n = 2 with a 1 mL dose and n = 2 with a 2 mL dose). Outcome measures included MRI assessment at baseline, 6 weeks and 12 weeks, histopathology at 12 weeks and clinical pathology. MRI images and histological slides were scored by 2 blinded readers (veterinarian and human radiologist, and veterinarian pathologist) and averaged. The Generalized Linear Model task (SAS Enterprise Guide 7.1 and SAS 9.4) was used to compare the different groups with post-hoc analysis to test for pairwise differences. Ortho-R implants were detected near the enthesis, near the top of the anchors holes and at the surface of ISP tendon and muscle at 1 day. Numerous polymorphonuclear cells were recruited to the implant in the case of ISP tendon and muscle. On MRI, all repair sites were hyperintense compared to normal tendon at 6 weeks and only 1 out 18 repair sites was isointense at 12 weeks. The tendon repair site gap seen on MRI, which is the length of the hyperintense region between the greater tuberosity and tendon with normal signal intensity, was decreased by treatment with the 2 mL dose when compared to control at 12 weeks (p = 0.01). Histologically, none of the repair sites were structurally normal. A trend of improved structural organization of the tendon (p = 0.06) and improved structural appearance of the enthesis (p = 0.1) with 2 mL dose treatment compared to control was seen at 12 weeks. There was no treatment-specific effect on all standard safety outcome measures, which suggests high safety. Ortho-R implants (2 mL dose) modulated the
Bone marrow concentrates are being used to augment soft tissue healing. However, only 0.01% of these cells meet the criteria of a mesenchymal stem cell (MSC), which likely accounts for the variability in reported results. Previous studies using an established rat rotator cuff repair model have demonstrated that bone marrow-derived MSCs had no effect on healing. In this study we evaluated the effect of purified human MSCs on
Tendinopathy is a debilitating musculoskeletal
condition which can cause significant pain and lead to complete rupture
of the tendon, which often requires surgical repair. Due in part
to the large spectrum of tendon pathologies, these disorders continue
to be a clinical challenge. Animal models are often used in this
field of research as they offer an attractive framework to examine
the cascade of processes that occur throughout both tendon pathology and
repair. This review discusses the structural, mechanical, and biological
changes that occur throughout tendon pathology in animal models,
as well as strategies for the improvement of tendon healing. Cite this article: