Aims. This systematic review aims to identify 3D predictors derived from biplanar reconstruction, and to describe current methods for improving curve prediction in patients with mild adolescent idiopathic scoliosis. Methods. A comprehensive search was conducted by three independent investigators on MEDLINE, PubMed, Web of Science, and Cochrane Library. Search terms included “adolescent idiopathic scoliosis”,“3D”, and “progression”. The inclusion and exclusion criteria were carefully defined to include clinical studies. Risk of bias was assessed with the Quality in Prognostic Studies tool (QUIPS) and Appraisal tool for Cross-Sectional Studies (AXIS), and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach. In all, 915 publications were identified, with 377 articles subjected to full-text screening; overall, 31 articles were included. Results. Torsion index (TI) and apical vertebral
We undertook a radiographic analysis with pre-operative computed tomographic myelography in 78 patients with idiopathic scoliosis in order to analyse
This study aimed to verify the accuracy of the DIERS Formetric Scan when assessing vertebral
Purpose. To determine if clinical outcomes are correlated with center of
Introduction. There is no consensus among scoliosis surgeons on which surface topography method and parameters may be used as an alternative to serial radiography to monitor scoliosis progression. The aim of this study was to evaluate the inter-correlation among surface
Aims. This study aimed to evaluate rasterstereography of the spine as a diagnostic test for adolescent idiopathic soliosis (AIS), and to compare its results with those obtained using a scoliometer. Methods. Adolescents suspected of AIS and scheduled for radiographs were included. Rasterstereographic scoliosis angle (SA), maximal vertebral surface
Aims. Scoliosis is a lateral curvature of the spine with associated
Background. Scoliosis is described as a lateral spinal curvature exceeding ten degrees on radiograph with vertebral
Aims. The aim of this retrospective study was to compare the correction achieved using a convex pedicle screw technique and a low implant density achieved using periapical concave-sided screws and a high implant density. We hypothesized that there would be no difference in outcome between the two techniques. Methods. We retrospectively analyzed a series of 51 patients with a thoracic adolescent idiopathic scoliosis. There were 26 patients in the convex pedicle screw group who had screws implanted periapically (Group 2) and a control group of 25 patients with bilateral pedicle screws (Group 1). The patients’ charts were reviewed and pre- and postoperative radiographs evaluated. Postoperative patient-reported outcome measures (PROMs) were recorded. Results. The number of implants (14.5 vs 17.1) and the implant density (1.5 vs 1.9) were significantly lower in Group 2 (p < 0.001). Operating time was 27 minutes shorter in Group 2 than in Group 1, with a mean of 217 minutes (SD 50.5; 120 to 346). The duration of surgery per instrumented vertebra was reduced by 19% in Group 2 (p = 0.011). No statistical difference was found in the postoperative Cobb angle, vertebral
Aims. The aim of the present study was to answer the question whether curve morphology and location have an influence on rigid conservative treatment in patients with adolescent idiopathic scoliosis (AIS). Methods. We retrospectively analyzed AIS in 127 patients with single and double curves who had been treated with a Chêneau brace and physiotherapeutic specific exercises (B-PSE). The inclusion criteria were the presence of structural major curves ≥ 20° and < 50° (Risser stage 0 to 2) at the time when B-PSE was initiated. The patients were divided into two groups according to the outcome of treatment: failure (curve progression to ≥ 45° or surgery) and success (curve progression < 45° and no surgery). The main curve type (MCT), curve magnitude, and length (overall, above and below the apex), apical
Background. Partial facetectomies with pedicle screw instrumentation is widespread and a well described technique for achieving posterior correction of scoliosis. Newton et al. first described the use of the UBS in the posterior correction of AIS in 2014. The aim of this study was to compare the effectiveness of the UBSPO in achieving posterior correction in Type1 AIS as compared to the traditional partial facetectomies. Aim of this study was to assess the effectiveness of USBPO in achieving posterior correction in Type 1 AIS as compared to partial facetectomies. Methods. A retrospective review of 40 patients with type 1 AIS who had undergone a posterior correction of scoliosis between 2010 and 2016 was performed. Group A (n=20) consisted of consecutive patients that had partial facetectomies while Group B (n=20) consisted of consecutive patients having UBSPO. Both groups were matched for demographic parameters. Pre and post-operative radiographic parameters and operative data in both groups were compared. The Mann-Whitney U test was used for statistical analysis. Results. There was no significant difference between the two groups in terms of age, sex, magnitude of curves, apical
Introduction. Traditionally correction of idiopathic paediatric scoliosis is done by hybrid fixation. This involves a judicious combination of mono-axial and poly-axial screw constructs. This has inherent perceived advantages with better deformity correction and maintaining alignment without loss of correction over time. Study design. Single centre retrospective review of prospective collected data on the radiological analysis of idiopathic paediatric scoliosis corrections. The study compared hybrid screw constructs (poly-axial & mono-axial) to all poly-axial screw constructs over 28 months. Objective. Compare loss of correction between hybrid screw construct group (HSG) and all poly-axial screw construct group (PSG). Method. Retrospective review of preoperative, post-operative and latest follow-up radiographs on the cohort of 42 consecutive patients over a period of 28 months from a single surgeon series. Results. There were 19 patients (16 females, 3 male) in HSG and 23 (18 females, 5 male) in PSG. Average age at surgery was 14 years for HSG and 15.8 years for PSG. The average baseline Cobbs angle for HSG was 64.57°and 60.79° for PSG. In the HSG, on average 11.6 levels were fused and, in the PSG, it was 11.3 level. Mean screw density for HSG was 1.54 and PSG was 1.6. Mean correction from pre-op to immediate post-op was 46.06° (70.10%) in the HS group and 41.24 degrees (67.78%) in the PS group. At the last follow-up, mean correction was 45.12° (68.0%) for the HSG and 42.43° (70.39%) for PSG. Loss of correction from post-operative radiographs to latest follow up averaged 10.05% in HSG and 3.86% for PSG. Discussion. All poly-axial screw constructs has the advantage of minimal tray inventory, simple logistics, decreased surgical time and overall better efficiency. Rod application and derotation over poly-axial screw constructs is well controlled and we found no difference in the performance of these screws during and after the procedure. Conclusion. There was no statistically significant difference in the degree or loss of correction in HSG or PSG. No difference in radiological outcomes. In poly-axial pedicle screw construct, threading the rod and correction manoeuvres are easier and thereby reducing surgical times. There was no compromise on the derotation manoeuvre and correction of the apical
To systematically evaluate whether bracing can effectively achieve curve regression in patients with adolescent idiopathic scoliosis (AIS), and to identify any predictors of curve regression after bracing. Two independent reviewers performed a comprehensive literature search in PubMed, Ovid, Web of Science, Scopus, and Cochrane Library to obtain all published information about the effectiveness of bracing in achieving curve regression in AIS patients. Search terms included “brace treatment” or “bracing,” “idiopathic scoliosis,” and “curve regression” or “curve reduction.” Inclusion criteria were studies recruiting patients with AIS undergoing brace treatment and one of the study outcomes must be curve regression or reduction, defined as > 5° reduction in coronal Cobb angle of a major curve upon bracing completion. Exclusion criteria were studies including non-AIS patients, studies not reporting p-value or confidence interval, animal studies, case reports, case series, and systematic reviews. The GRADE approach to assessing quality of evidence was used to evaluate each publication.Aims
Methods
The aim of this study was to assess the ability of morphological spinal parameters to predict the outcome of bracing in patients with adolescent idiopathic scoliosis (AIS) and to establish a novel supine correction index (SCI) for guiding bracing treatment. Patients with AIS to be treated by bracing were prospectively recruited between December 2016 and 2018, and were followed until brace removal. In all, 207 patients with a mean age at recruitment of 12.8 years (SD 1.2) were enrolled. Cobb angles, supine flexibility, and the rate of in-brace correction were measured and used to predict curve progression at the end of follow-up. The SCI was defined as the ratio between correction rate and flexibility. Receiver operating characteristic (ROC) curve analysis was carried out to assess the optimal thresholds for flexibility, correction rate, and SCI in predicting a higher risk of progression, defined by a change in Cobb angle of ≥ 5° or the need for surgery.Aims
Methods
This study addressed two questions: first, does surgical correction of an idiopathic scoliosis increase the volume of the rib cage, and second, is it possible to evaluate the change in lung function after corrective surgery for adolescent idiopathic scoliosis (AIS) using biplanar radiographs of the ribcage with 3D reconstruction? A total of 45 patients with a thoracic AIS which needed surgical correction and fusion were included in a prospective study. All patients underwent pulmonary function testing (PFT) and low-dose biplanar radiographs both preoperatively and one year after surgery. The following measurements were recorded: forced vital capacity (FVC), slow vital capacity (SVC), and total lung capacity (TLC). Rib cage volume (RCV), maximum rib hump, main thoracic curve Cobb angle (MCCA), medial-lateral and anteroposterior diameter, and T4-T12 kyphosis were calculated from 3D reconstructions of the biplanar radiographs.Aims
Methods
Introduction. Lumbar spondylolysis is a fatigue fracture of the pars interarticularis and correlates with Spina Bifida Oculta (SBO) in 67%. Hpothesis. Load is normally transferred across the arch in axial
The purpose of this study is to investigate what effect cross links have on scoliosis constructs and whether cross links may be used instead of pedicle screws at the apex of the deformity. The
The aim of this study was to determine whether there is an increased prevalence of scoliosis in patients who have suffered from a haematopoietic malignancy in childhood. Patients with a history of lymphoma or leukaemia with a current age between 12 and 25 years were identified from the regional paediatric oncology database. The medical records and radiological findings were reviewed, and any spinal deformity identified. The treatment of the malignancy and the spinal deformity, if any, was noted.Aims
Methods
Aim:. To Determine Whether Maximal Rib Prominence Measured On Lateral Radiographs Can Be Used As A Surrogate To Rib
Auckland City Hospital, Auckland, New Zealand. To show that the spinous processes (SPs) increase in size with age. To investigate the incidence of SP abutment, relationship to disc degeneration and age related kyphosis. Describe patterns of SP neoarticulation in relation to back pain and intersegmental axial