Successful estimation of postoperative PROMs prior to a joint replacement surgery is important in deciding the best treatment option for a patient. However, estimation of the outcome is associated with substantial noise around individual prediction. Here, we test whether a classifier neural network can be used to simultaneously estimate postoperative PROMs and uncertainty better than current methods. We perform Oxford hip score (OHS) estimation using data collected by the NJR from 249,634 hip replacement surgeries performed from 2009 to 2018. The
Successful estimation of postoperative PROMs prior to a joint replacement surgery is important in deciding the best treatment option for a patient. However, estimation of the outcome is associated with substantial noise around individual prediction. Here, we test whether a classifier neural network can be used to simultaneously estimate postoperative PROMs and uncertainty better than current methods. We perform Oxford hip score (OHS) estimation using data collected by the NJR from 249,634 hip replacement surgeries performed from 2009 to 2018. The
Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA. This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery.Aims
Methods
Manual impaction, with a mallet and introducer, remains the standard method of installing cementless acetabular cups during total hip arthroplasty (THA). This study aims to quantify the accuracy and precision of manual impaction strikes during the seating of an acetabular component. This understanding aims to help improve impaction surgical techniques and inform the development of future technologies. Posterior approach THAs were carried out on three cadavers by an expert orthopaedic surgeon. An instrumented mallet and introducer were used to insert cementless acetabular cups. The motion of the mallet, relative to the introducer, was analyzed for a total of 110 strikes split into low-, medium-, and high-effort strikes. Three parameters were extracted from these data: strike vector, strike offset, and mallet face alignment.Aims
Methods
The primary objective of this study was to develop a validated classification system for assessing iatrogenic bone trauma and soft-tissue injury during total hip arthroplasty (THA). The secondary objective was to compare macroscopic bone trauma and soft-tissues injury in conventional THA (CO THA) versus robotic arm-assisted THA (RO THA) using this classification system. This study included 30 CO THAs versus 30 RO THAs performed by a single surgeon. Intraoperative photographs of the osseous acetabulum and periacetabular soft-tissues were obtained prior to implantation of the acetabular component, which were used to develop the proposed classification system. Interobserver and intraobserver variabilities of the proposed classification system were assessed.Aims
Methods
The optimum clearance between the bearing surfaces of hip arthroplasties is unknown. Theoretically, to minimize wear, it is understood that clearances must be low enough to maintain optimal contact pressure and fluid film lubrication, while being large enough to allow lubricant recovery and reduce contact patch size. This study aimed to identify the relationship between diametrical clearance and volumetric wear, through the analysis of retrieved components. A total of 81 metal-on-metal Pinnacle hips paired with 12/14 stems were included in this study. Geometrical analysis was performed on each component, using coordinate and roundness measuring machines. The relationship between their as-manufactured diametrical clearance and volumetric wear was investigated. The Mann-Whitney U test and unpaired Aims
Methods
The primary objective of this study was to compare accuracy in restoring the native centre of hip rotation in patients undergoing conventional manual total hip arthroplasty (THA) This prospective cohort study included 50 patients undergoing conventional manual THA and 25 patients receiving robotic-arm assisted THA. Patients undergoing conventional manual THA and robotic-arm assisted THA were well matched for age (mean age, 69.4 years (Objectives
Materials and Methods
The objective of this study was to explore dimensionality of
the Oxford Hip Score (OHS) and examine whether self-reported pain
and functioning can be distinguished in the form of subscales. This was a secondary data analysis of the UK NHS hospital episode
statistics/patient-reported outcome measures dataset containing
pre-operative OHS scores on 97 487 patients who were undergoing
hip replacement surgery. Objective
Methods
The accuracy and precision of two new methods of model-based
radiostereometric analysis (RSA) were hypothesised to be superior
to a plain radiograph method in the assessment of polyethylene (PE)
wear. A phantom device was constructed to simulate three-dimensional
(3D) PE wear. Images were obtained consecutively for each simulated
wear position for each modality. Three commercially available packages
were evaluated: model-based RSA using laser-scanned cup models (MB-RSA),
model-based RSA using computer-generated elementary geometrical
shape models (EGS-RSA), and PolyWare. Precision (95% repeatability
limits) and accuracy (Root Mean Square Errors) for two-dimensional
(2D) and 3D wear measurements were assessed.Objectives
Methods
We developed a method of applying vibration to the impaction bone grafting process and assessed its effect on the mechanical properties of the impacted graft. Washed morsellised bovine femoral heads were impacted into shear test rings. A range of frequencies of vibration was tested, as measured using an accelerometer housed in a vibration chamber. Each shear test was repeated at four different normal loads to generate stress-strain curves. The Mohr-Coulomb failure envelope from which shear strength and interlocking values are derived was plotted for each test. The experiments were repeated with the addition of blood in order to replicate a saturated environment. Graft impacted with the addition of vibration at all frequencies showed improved shear strength when compared with impaction without vibration, with 60 Hz giving the largest effect. Under saturated conditions the addition of vibration was detrimental to the shear strength of the aggregate. The civil-engineering principles of particulate settlement and interlocking also apply to impaction bone grafting. Although previous studies have shown that vibration may be beneficial in impaction bone grafting on the femoral side, our study suggests that the same is not true in acetabular revision.
The high revision rates of the DePuy Articular Surface Replacement (ASR) and the DePuy ASR XL (the total hip arthroplasty (THA) version) have led to questions over the viability of metal-on-metal (MoM) hip joints. Some designs of MoM hip joint do, however, have reasonable mid-term performance when implanted in appropriate patients. Investigations into the reasons for implant failure are important to offer help with the choice of implants and direction for future implant designs. One way to assess the performance of explanted hip prostheses is to measure the wear (in terms of material loss) on the joint surfaces. In this study, a coordinate measuring machine (CMM) was used to measure the wear on five failed cementless Biomet Magnum/ReCap/ Taperloc large head MoM THAs, along with one Biomet ReCap resurfacing joint. Surface roughness measurements were also taken. The reason for revision of these implants was pain and/or adverse reaction to metal debris (ARMD) and/or elevated blood metal ion levels.Objectives
Methods
We present a new CT-based method which measures cover of the femoral head in both normal and dysplastic hips and allows assessment of acetabular inclination and anteversion. A clear topographical image of the head with its covered area is generated. We studied 36 normal and 39 dysplastic hips. In the normal hips the mean cover was 73% (66% to 81%), whereas in the dysplastic group it was 51% (38% to 64%). The significant advantage of this technique is that it allows the measurements to be standardised with reference to a specific anatomical plane. When this is applied to assessing cover in surgery for dysplasia of the hip it gives a clearer understanding of where the corrected hip stands in relation to normal and allows accurate assessment of inclination and anteversion.
Large-head metal-on-metal total hip replacement has a failure rate of almost 8% at five years, three times the revision rate of conventional hip replacement. Unexplained pain remains a feature of this type of arthroplasty. All designs of the femoral component of large-head metal-on-metal total hip replacements share a unique characteristic: a subtended angle of 120° defining the proportion of a sphere that the head represents. Using MRI, we measured the contact area of the iliopsoas tendon on the femoral head in sagittal reconstruction of 20 hips of patients with symptomatic femoroacetabular impingement. We also measured the articular extent of the femoral head on 40 normal hips and ten with cam-type deformities. Finally, we performed virtual hip resurfacing on normal and cam-type hips, avoiding overhang of the metal rim inferomedially. The articular surface of the femoral head has a subtended angle of 120° anteriorly and posteriorly, but only 100° medially. Virtual surgery in a normally shaped femoral head showed a 20° skirt of metal protruding medially where iliopsoas articulates. The excessive extent of the large-diameter femoral components may cause iliopsoas impingement independently of the acetabular component. This may be the cause of postoperative pain with these implants.
The early failure and revision of bimodular primary
total hip arthroplasty prostheses requires the identification of the
risk factors for material loss and wear at the taper junctions through
taper wear analysis. Deviations in taper geometries between revised
and pristine modular neck tapers were determined using high resolution
tactile measurements. A new algorithm was developed and validated
to allow the quantitative analysis of material loss, complementing
the standard visual inspection currently used. The algorithm was applied to a sample of 27 retrievals ( Cite this article:
Three-dimensional surface models of the normal hemipelvis derived from volumetric CT data on 42 patients were used to determine the radius, depth and orientation of the native acetabulum. A sphere fitted to the lunate surface and a plane matched to the acetabular rim were used to calculate the radius, depth and anatomical orientation of the acetabulum. For the 22 females the mean acetabular abduction, anteversion, radius and normalised depth were 57.1° (50.7° to 66.8°), 24.1° (14.0° to 33.3°), 25 mm (21.7 to 30.3) and 0.79 mm (0.56 to 1.04), respectively. The same parameters for the 20 males were 55.5° (47.7° to 65.9°), 19.3° (8.5° to 32.3°), 26.7 mm (24.5 to 28.7) and 0.85 mm (0.65 to 0.99), respectively. The orientation of the native acetabulum did not match the safe zone for acetabular component placement described by Lewinnek. During total hip replacement surgeons should be aware that the average abduction angle of the native acetabulum exceeds that of the safe zone angle. If the concept of the safe zone angle is followed, abduction of the acetabular component should be less than the abduction of the native acetabulum by approximately 10°.
We have developed a CT-based navigation system using infrared light-emitting diode markers and an optical camera. We used this system to perform cementless total hip replacement using a ceramic-on-ceramic bearing couple in 53 patients (60 hips) between 1998 and 2001. We reviewed 52 patients (59 hips) at a mean of six years (5 to 8) postoperatively. The mid-term results of total hip replacement using navigation were compared with those of 91 patients (111 hips) who underwent this procedure using the same implants, during the same period, without navigation. There were no significant differences in age, gender, diagnosis, height, weight, body mass index, or pre-operative clinical score between the two groups. The operation time was significantly longer where navigation was used, but there was no significant difference in blood loss or navigation-related complications. With navigation, the acetabular components were placed within the safe zone defined by Lewinnek, while without, 31 of the 111 components were placed outside this zone. There was no significant difference in the Merle d’Aubigne and Postel hip score at the final follow-up. However, hips treated without navigation had a higher rate of dislocation. Revision was performed in two cases undertaken without navigation, one for aseptic acetabular loosening and one for fracture of a ceramic liner, both of which showed evidence of neck impingement on the liner. A further five cases undertaken without navigation showed erosion of the posterior aspect of the neck of the femoral component on the lateral radiographs. These seven impingement-related mechanical problems correlated with malorientation of the acetabular component. There were no such mechanical problems in the navigated group. We conclude that CT-based navigation increased the precision of orientation of the acetabular component and control of limb length in total hip replacement, without navigation-related complications. It also reduced the rate of dislocation and mechanical problems related to impingement.