Aims. There are concerns regarding nail/medullary canal mismatch and initial stability after cephalomedullary nailing in unstable pertrochanteric fractures. This study aimed to investigate the effect of an additional anteroposterior blocking screw on fixation stability in unstable pertrochanteric fracture models with a nail/medullary canal mismatch after short cephalomedullary nail (CMN) fixation. Methods. Eight finite element models (FEMs), comprising four different femoral diameters, with and without blocking screws, were constructed, and unstable intertrochanteric fractures fixed with short CMNs were reproduced in all FEMs. Micromotions of distal shaft fragment related to proximal fragment, and stress concentrations at the nail construct were measured. Results. Micromotions in FEMs without a blocking screw significantly increased as nail/medullary canal mismatch increased, but were similar between FEMs with a blocking screw regardless of mismatch. Stress concentration at the nail construct was observed at the junction of the nail body and lag screw in all FEMs, and increased as nail/medullary canal mismatch increased, regardless of blocking screws. Mean stresses over
µCT images are commonly analysed to assess changes in bone density and architecture in preclinical murine models. Several platforms provide automated analysis of bone architecture parameters from volumetric
To evaluate the effects of 6 and 18 months of abaloparatide (ABL) compared with placebo (PBO) on bone mineral density (BMD) in the acetabular regions of postmenopausal women with osteoporosis (OP). Acetabular bone loss, as may occur in OP, increases risk of acetabular fragility fractures. a. In total hip arthroplasty (THA), low acetabular BMD adversely affects primary stability, osseointegration, and migration of acetabular cups. c. ABL is an osteoanabolic agent for the treatment of men and postmenopausal women with OP at high risk for fracture. Effects of ABL on acetabular BMD are unknown. Hip DXA scans were obtained at baseline, 6, and 18 months from a random subgroup of postmenopausal women (aged 49–86 y) from the phase 3 ACTIVE trial randomized to either ABL 80 µg/d or PBO (n=250/group). Anatomical landmarks were identified in each DXA scan to virtually place a hemispherical shell model of an acetabular cup and define
Reconstruction of the anterior cruciate ligament (ACL) allows to restore stability of the knee, in order to facilitate the return to activity (RTA). Although it is understood that the tendon autograft undergoes a ligamentous transformation postoperatively, knowledge about longitudinal microstructural differences in tissue integrity between types of tendon autografts (ie, hamstring vs. patella) remains limited. Diffusion tensor imaging (DTI) has emerged as an objective biomarker to characterize the ligamentization process of the tendon autograft following surgical reconstruction. One major limitation to its use is the need for a pre-injury baseline MRI to compare recovery of the graft, and inform RTA. Here, we explore the relationship for DTI biomarkers (fractional anisotropy, FA) between knees bilaterally, in healthy participants, with the hypothesis that agreement within a patient's knees may support the use of the contralateral knee as a reference to monitor recovery of the tendon autograft, and inform RTA. Fifteen participants with no previous history of knee injuries were enrolled in this study (age, 26.7 +/− 4.4 years; M/F, 7/8). All images were acquired on a 3T Prisma Siemens scanner using a secured flexible 18-channel coil wrapped around the knee. Both knees were scanned. A 3D anatomical Double Echo Steady State (DESS) sequence was acquired on which
Abstract. Objective. The preparation of host degenerate cartilage for repair typically requires cutting and/or scraping to remove the damaged tissue. This can lead to mechanical injury and cartilage cell (chondrocytes) death, potentially limiting the integration of repair material. This study evaluated cell death at the site of cutting injury and determined whether raising the osmotic pressure (hyper-osmolarity) prior to injury could be chondroprotective. Methods. Ex vivo human femoral head cartilage was obtained from 13 patients (5 males and 8 females: 71.8 years old) with Ethical Permission and Patient consent. Cartilage wells were created using 3 or 5mm biopsy punches. Cell death at the wounded edge of the host cartilage and the edge of the extracted explants were assessed by quantifying the percentage of cell death (PCD) and measuring the width of the cell death zone at identified
Abstract. Objectives. Osteoarthritis (OA) is a complex joint disorder characterised by the loss of extracellular matrix (ECM) leading to cartilage degeneration. Changes to cartilage cell (chondrocyte) behaviour occur including cell swelling, the development of fine cytoplasmic processes and cell clustering leading to changes in cell phenotype and development of focal areas of mechanically-weak fibrocartilaginous matrix. [1]. To study the sequence of events in more detail, we have investigated the changes to in situ chondrocytes within human cartilage which has been lightly scraped and then cultured with serum. Methods. Human femoral heads were obtained with Ethical permission and consent from four female patients (mean age 74 yrs) undergoing hip arthroplasty following femoral neck fracture. Osteochondral explants of macroscopically-normal cartilage were cultured as a non-scraped control, or scraped gently six times with a scalpel blade and both maintained in culture for up to 2wks in Dulbecco's Modified Eagle's Medium (DMEM) with 25% human serum (HS). Explants were then labelled with CMFDA (5-chloromethylfluorescein-diacetate) and PI (propidium iodide) (10μM each) to identify the morphology of living or dead chondrocytes respectively. Explants were imaged using confocal microscopy and in situ chondrocyte morphology, volume and clustering assessed quantitatively within standardised
Aims. Although knee osteoarthritis (OA) is diagnosed and monitored radiologically, actual full-thickness cartilage loss (FTCL) has rarely been correlated with radiological classification. This study aims to analyze which classification system correlates best with FTCL and to assess their reliability. Methods. A prospective study of 300 consecutive patients undergoing unilateral total knee arthroplasty (TKA) for OA (mean age 69 years (44 to 91; standard deviation (SD) 9.5), 178 (59%) female). Two blinded examiners independently graded preoperative radiographs using five common systems: Kellgren-Lawrence (KL); International Knee Documentation Committee (IKDC); Fairbank; Brandt; and Ahlbäck. Interobserver agreement was assessed using the intraclass correlation coefficient (ICC). Intraoperatively, anterior cruciate ligament (ACL) status and the presence of FTCL in 16
Introduction. Cementless total knee arthroplasty (TKA) implants use an interference fit to achieve fixation, which depends on the difference between the inner dimensions of the implant and outer dimensions of the bone. However, the most optimal interference fit is still unclear. A higher interference fit could lead to a superior fixation, but it could also cause bone abrasion and permanent deformation during implantation. Therefore, this study aims to investigate the effect of increasing the interference fit from 350 µm to 700 µm on the primary stability of cementless tibial implants by measuring micromotions and gaps at the bone-implant interface when subjected to two loading conditions. Methods. Two cementless e.motion® tibial components (Total Knee System, B. Braun) with different interference fit and surface coating were implanted in six pairs of relatively young human cadaver tibias (47–60 years). The Orthoload peak loads of gait (1960N) and squat (1935N) were applied to the specimens with a custom made load applicator (Figure 1A). The micromotions (shear displacement) and opening/closing gaps (normal displacement) were measured with Digital Image Correlation (DIC) in 6 different
Background. Stemless prostheses are recognized to be an effective solution for anatomic total shoulder arthroplasty (TSA) while providing bone preservation and shortest operating time. Reverse shoulder arthroplasty (RSA) with stemless has not showed the same effectiveness, as clinical and biomechanical performances strongly depend on the design. The main concern is related to stability and bone response due to the changed biomechanical conditions; few studies have analyzed these effects in anatomic designs through Finite Element Analysis (FEA), however there is currently no study analyzing the reverse configuration. Additionally, most of the studies do not consider the effect of changing the neck-shaft angle (NSA) resection of the humerus nor the proper assignment of spatial bone properties to the bone models used in the simulations. The aim of this FEA study is to analyze bone response and primary stability of the SMR Stemless prosthesis in reverse with two different NSA cuts and two different reverse angled liners, in bone models with properties assigned using a quantitative computed tomography (QCT) methodology. Methods. Sixteen fresh-frozen cadaveric humeri were modelled using the QCT-based finite element methodology. The humeri were CT-scanned with a hydroxyapatite phantom to allow spatial bone properties assignment [Fig. 1]. Two implanted SMR stemless reverse configurations were considered for each humerus: a 150°-NSA cut with a 0° liner and a 135°-NSA cut with a 7° sloped liner [Fig. 2]. A 105° abduction loading condition was simulated on both the implanted reverse models and the intact (anatomic) humerus; load components were derived from previous dynamic biomechanical simulations on RSA implants for the implanted stemless models and from the OrthoLoad database for the intact humeri. The postoperative bone volume expected to resorb or remodel [Fig. 3a] in the implanted humeri were compared with their intact models in sixteen metaphyseal
Though knee osteoarthritis (OA) is diagnosed and monitored radiographically, full thickness cartilage loss (FTCL) has rarely been correlated with radiographic classification. This study aims to analyse which classification system correlates best with FTCL and assessing their reliability. Prospective study of 300 consecutive patients undergoing total knee arthroplasty (TKA) for OA. Two blinded examiners independently graded preoperative radiographs using 5 systems: Kellgren-Lawrence (KL); International Knee Documentation Committee (IKDC); Fairbank; Brandt; and Ahlback. Interobserver agreement was assessed using the intraclass correlation coefficient. Intraoperatively, anterior cruciate ligament (ACL) status and FTCL in 16
Objectives. The purpose of this study was to clarify the appearance of the reparative tissue on the articular surface and to analyse the properties of the reparative tissue after hemicallotasis osteotomy (HCO) using MRI T1ρ and T2 mapping. Methods. Coronal T1ρ and T2 mapping and three-dimensional gradient-echo images were obtained from 20 subjects with medial knee osteoarthritis. We set the
The purpose of this study is to quantify the distribution of bone density in the scapulae of patients undergoing reverse shoulder arthroplasty (RSA) to guide optimal screw placement. To achieve this aim, we compared bone density in regions around the glenoid that are targeted for screw placement, as well as bone density variations medial to lateral within the glenoid. Specimen included twelve scapula in 12 patients with a mean age of 74 years (standard deviation = 9.2 years). Each scapula underwent a computed tomography (CT) scan with a Lightspeed+ XCR 16-Slice CT scanner (General Electric, Milwaukee, USA). Three-dimensional (three-D) surface mesh models and masks of the scapulae containing three-D voxel locations along with the relative Hounsfield Units (HU) were created.
We undertook a randomised prospective follow-up study of changes in peri-prosthetic bone mineral density (BMD) after hip resurfacing and compared them with the results after total hip replacement. A total of 59 patients were allocated to receive a hip resurfacing (n = 29) or an uncemented distally fixed total hip replacement (n = 30). The BMD was prospectively determined in four separate
Few studies suggest that the use of a cemented stem reduces proximal stresses and may result in proximal bone resorption. Aim of our study: Does bone cement affect peri prosthetic bone density? The study was approved by the local ethics committee. Patient and methods: 30 patients were included in each group based on power analysis. All 60 patients had the same type of knee replacement (Rotaglide rotating platform). Both groups, cemented and uncemented respectively were matched for the variables like mean age (67.2 &
67.33 years), gender (13: 17 males: females), body mass index (30.95, 29.90), average time following surgery (4 and 3.25 years), activity level (UCLA scoring: 6 &
4) and mean T score (osteoporosis index: −0.51 &
−0.62). Periprosthetic bone density was measured in five
The relations among tissue quality, socket discomfort, gait characteristics, and socket pressures are not well established for the unilateral below-knee amputee population. These relations were evaluated for six amputees at seventeen
We used dual-energy x-ray absorptiometry (DEXA) to evaluate the extent of periprosthetic bone remodelling around a prosthesis for distal femoral reconstruction, the Kotz modular femoral tibial replacement (KMFTR; Howmedica, Rutherford, New Jersey). A total of 23 patients was entered into the study which had four parts: 1) 17 patients were scanned three times on both the implant and contralateral legs to determine whether the precision of DEXA measurements was adequate to estimate bone loss surrounding the anchorage piece of the KMFTR; 2) in 23 patients the bone mineral density (BMD) in different
In this study, we evaluated the labrum tear using radial sequence 3D Multiple Echo Recombined Gradient Echo (MERGE) MRI without arthrography based on modified Czerny's classification, comparing with actual arthroscopic findings. A total of 61 hips including 27 hips of femoroacetabular impingement (FAI), 19 hips of borderline development dysplasia of the hip (BDDH) and 15 hips of early stage osteoarthritis (OA) were enrolled this retrospective study. MRI findings evaluated in each three
Animal studies have shown that implanted anterior cruciate ligament (ACL) grafts initially undergo a process of revascularisation prior to remodelling, ultimately increasing mechanical strength. We investigated whether minimal debridement of the intercondylar notch and the residual stump of the ruptured ACL leads to earlier revascularisation in ACL reconstruction in humans. We undertook a randomised controlled clinical trial in which 49 patients underwent ACL reconstruction using autologous four-strand hamstring tendon grafts. Randomised by the use of sealed envelopes, 25 patients had a conventional clearance of the intercondylar notch and 24 had a minimal debridement method. Three patients were excluded from the study. All patients underwent MR scanning postoperatively at 2, 6 and 12 months, together with clinical assessment using a KT-1000 arthrometer and International Knee Documentation Committee (IKDC) evaluation. All observations were made by investigators blinded to the surgical technique. Signal intensity was measured in 4 mm diameter
Objectives. Staphylococcus aureus (S. aureus) is the most commonly implicated organism in septic arthritis, a condition that may be highly destructive to articular cartilage. Previous studies investigating laboratory and clinical strains of S. aureus have demonstrated that potent toxins induced significant chondrocyte death, although the precise toxin or toxins that were involved was unknown. In this study, we used isogenic S. aureus mutants to assess the influence of alpha (Hla)-, beta (Hlb)-, and gamma (Hlg)-haemolysins, toxins considered important for the destruction of host tissue, on in situ bovine chondrocyte viability. Methods. Bovine cartilage explants were cultured with isogenic S. aureus mutants and/or their culture supernatants. Chondrocyte viability was then assessed within defined
Dual energy X-ray absorptiometry (DXA) is a precise tool for measuring bone mineral density (BMD) around total joint prostheses. The Hologic ‘metal-removal hip’ analysis package (Hologic Inc, Waltham, Massachusetts) is a DOS-based analysis platform that has been previously validated for measurement of pelvic and proximal BMD after total hip arthroplasty (THA). This software has undergone a change in the operating platform to a Windows-based system that has also incorporated changes to DXA image manipulation on-screen. These changes may affect the magnitude of random error (precision) and systematic error (bias) when compared with measurements made using the previously validated DOS-based system. These factors could influence interpretation of longitudinal studies commenced using the DOS system and later completed using the Windows system. The aims of this study were to compare the precision and bias of pelvic and femoral periprosthetic BMD measurements made using the Windows versus the DOS analysis platform of the Hologic ‘metal-removal hip’ software. A total of 29 subjects (17 men and 12 women) with a mean age of 51years (SD±10), who had undergone hybrid THA using a cemented stem and uncemented cup. Subjects underwent duplicate DXA scans of the hemipelvis and proximal femur taken on the same day after a period for repositioning.. Scans were obtained with the patient lying supine in the scanner with the legs in extension and the foot in a neutral position. Scans were carried out using the same Hologic QDR 4500-A fan-beam densitometer in ‘metal-removal hip’ scanning mode. The DXA scan acquisitions were analysed using both the DOS and the Windows versions of the analysis software. The same observer made all analyses (NRS). Pelvic scans were analysed using a four region of interest model and femoral scans were analysed using a seven region of interest model. Precision was expressed as coefficient of variation (CV%) and compared between methods using the F-test. Systematic bias was examined using the Bland and Altman method and paired t-test. The CV% for the pelvic