Distal radius fractures (DRFs) are one of the most common types of fracture and one which is often treated surgically. Standard X-rays are obtained for DRFs, and in most cases that have an intra-articular component, a routine CT is also performed. However, it is estimated that CT is only required in 20% of cases and therefore routine CT's results in the overutilisation of resources burdening radiology and emergency departments. In this study, we explore the feasibility of using deep learning to differentiate intra- and extra-articular DRFs automatically and help streamline which fractures require a CT. Retrospectively x-ray images were retrieved from 615 DRF patients who were treated with an ORIF at the Royal Brisbane and Women's Hospital. The images were classified into AO Type A, B or C fractures by three training registrars supervised by a consultant. Deep learning was utilised in a two-stage process: 1) localise and focus the
Aim. The localization of sequestrum in chronic osteomyelitis (COM) is crucial in preoperative planning. The identification of sequestrum on plain X-ray could be difficult. CT and MRI were reported to show the sequestrum. We aimed to analyze the sequestrum characteristics on 18F-FDG-PET-CT images. Methods. A prospective study included all patients diagnosed with long-bone chronic osteomyelitis. All patients had preoperative 18F-FDG-PET-CT. Images were analyzed using RadiAnt DICOM Viewer. Axial cuts were used to measure the Standard Uptake Ratio (SUV)max in the
Introduction. In revision TKA, the management of bone loss depends on location, type, and extent of bony deficiency. Treatment strategies involve cement filling, bone grafting and augments. On the market several solutions are currently available, differing for their shape, thickness and material. While the choice of the shape and the thickness is mainly dictated by the bone defect, no explicit guideline is currently available to describe the best choice of material to be selected for a specific clinical situation. However, the use of different materials could induce different response in term of bone stress and thus changes in implant stability that could worsen long-term implant performance. For these reasons, an investigation about the changes in bone stress in the femur and in the tibia when augments, with different materials and thicknesses was performed. Methods. Different configurations have been separately considered including proximal tibial, distal or/and posterior femoral augments with a thickness of 5, 10 and 15 mm. Apart the control, in which no augments were used, but only the TKA is considered, the augment in all the other configurations were considered made by three different materials: bone cement, to simulate cement filling, tantalum trabecular metal and conventional metal (titanium for the tibia and CoCr for the femoral augments). Each configuration was inserted on a lower leg model including a cruciate-retaining total knee arthroplasty and analyzed by means of finite element analysis applying the max force achieved during walking. The bone stress was investigated in the medial and lateral
Dual plating of the medial and lateral distal femur has been proposed to reduce angular malunion and hardware failure secondary to delayed union or nonunion. This strategy improves the strength and alignment of the construct, but it may compromise the vascularity of the distal femur paradoxically impairing healing. This study investigates the effect of dual plating versus single plating on the perfusion of the distal femur. Ten matched pairs of fresh-frozen cadaveric lower extremities were assigned to either isolated lateral plating or dual plating of a single limb. The contralateral lower extremity was used as a matched control. A distal femoral locking plate was applied to the lateral side of ten legs using a standard sub-vastus approach. Five femurs had an additional 3.5mm reconstruction plate applied to the medial aspect of the distal femur using a medial sub-vastus approach. The superficial femoral artery and the profunda femoris were cannulated at the level of the femoral head. Gadolinium MRI contrast solution (3:1 gadolinium to saline ration) was injected through the arterial cannula. High resolution fat-suppressed 3D gradient echo sequences were completed both with and without gadolinium contrast. Intra-osseous contributions were quantified within a standardized
The purpose of this study is to quantify the distribution of bone density in the scapulae of patients undergoing reverse shoulder arthroplasty (RSA) to guide optimal screw placement. To achieve this aim, we compared bone density in regions around the glenoid that are targeted for screw placement, as well as bone density variations medial to lateral within the glenoid. Specimen included twelve scapula in 12 patients with a mean age of 74 years (standard deviation = 9.2 years). Each scapula underwent a computed tomography (CT) scan with a Lightspeed+ XCR 16-Slice CT scanner (General Electric, Milwaukee, USA). Three-dimensional (three-D) surface mesh models and masks of the scapulae containing three-D voxel locations along with the relative Hounsfield Units (HU) were created. Regions of interest (ROI) were selected based on their potential glenoid baseplate screw positioning in RSA surgery. These included the base of coracoid inferior and lateral to the suprascapular notch, an anterior and posterior portion of the scapular spine, and an anterosuperior and inferior portion of the lateral border. Five additional regions resembling a clock face, on the glenoid articular surface were then selected to analyze medial to lateral variations in bone density including twelve, three, six, and nine-o'clock positions as well as a central region. Analysis of Variance (ANOVA) tests were used to examine statistical differences in bone density between each
Juvenile Osteochondritis dissecans (JOCD) in humans and subchondral cystic lesions (SCL) in horses (also termed radiolucencies) share similarities: they develop in skeletally immature individuals at the same location in the medial femoral condyle (MFC) and their etiology is only partially understood but trauma is suspected to be involved. JOCD is relatively uncommon in people whereas SCLs arise in 6% of young horses leading to lameness. Ischemic chondronecrosis is speculated to have a role in both osteochondrosis and SCL pathogenesis. We hypothesize that MFC radiolucencies develop very early in life following a focal internal trauma to the osteochondral junction. Our aims were to characterize early MFC radioluciencies in foals from 0 to 2 years old. Distal femurs (n=182) from Thoroughbred horses (n=91, 0–2 years old), presented for post-mortem examination for reasons unrelated to this study, were collected. Radiographs and clinical tomodensitometry were performed to identify lesions defined as a focal delay of ossification. Micro-tomodensitometry (m-CT) and histology was then performed on the MFCs (CT lesions and age-matched subset of controls). Images were constructed in 3D. The thawed condyles, following fixation, were sectioned within the
Developmental dysplasia of the hip (DDH) is a common risk factor of early osteoarthritis (OA), with insufficient coverage of the femoral head by the acetabulum which leads to excessive cartilage stresses in the hip joint. Knowledge of the molecular health of cartilage using MRI may diagnose and stage chondral disease, but more importantly allows for treatment stratification and prognostication. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) is a validated MRI technique for detecting early loss of proteoglycan (PG). However, it requires an injection of contrast agent and exercise prior to the scan. MRI techniques such as T1ρ and T2 mapping have also been shown to be sensitive to early biochemical changes in cartilage but can be performed without any contrast injection. In this study we evaluate three quantitative MR techniques (dGEMRIC, T1ρ and T2 mapping) in patients with DDH. Our hypothesis is that both T1ρ and T2 correlate with dGEMRIC, and thus may be effective non-contrast based techniques for biochemical cartilage mapping in DDH hips. Seven informed and consented patients (mean age: 31.1 years) with DDH were enrolled in this IRB approved MRI study before surgery. DDH was defined as a lateral center-edge angle under 25º and acetabular index >13º on the plain x-ray. All subjects underwent two successive MRI sessions at 3T: In the first cartilage T1ρ and T2 mapping were performed. After leaving the scanner the subjects were injected with 0.4ml/kg Dotarem (i.v.), walked for 15min and rested for 25min before returning into the MRI. dGEMRIC (T1post) mapping was initiated approximately 45min after the injection. Image post-processing, registration and cartilage segmentation was performed with Matlab. The joint was subdivided into anterior and posterior regions in the sagittal plane and into lateral, intermediate and medial zones in the transverse plane, resulting in six
Osteoarthritis (OA) is one of the most prevalent joint diseases involving progressive and degenerative changes to cartilage resulting from a variety of etiologies including post-traumatic incident or aging. OA lesions can be treated at its early stages through cell-based tissue engineering therapies using Mesenchymal Stem Cells (MSCs). In vivo models for evaluating these strategies, have described both chondral (impaction) and osteochondral (biopsy punch) defects. The aim of the investigation was to develop a compact and reproducible defect inducing post-traumatic degenerative changes mimicking early OA. Additionally, a pilot study to evaluate the efficacy of MSC-hydrogel treatment was also assessed. Surgery was performed on New Zealand white rabbits (male, 5–8 months old) with defects created on medial femoral condyle. For developing an appropriate defect, three approaches were used for evaluation: a biopsy punch (n = three at six and twelve weeks), an impaction device1 (n = three at six and twelve weeks) and a dental drill model (n = six at six and twelve weeks). At stated time points, condyles were harvested and decalcified in 10% EDTA, then embedded in Tissue-Tek and sectioned using a cryostat. Upon identification of
Although the pre- or intraoperative flexion angle in TKA has been commonly considered as a predictor of the postoperative flexion angle, patients with well flexion intraoperatively cannot necessarily obtain deep flexion angle postoperatively. The reason why inconsistencies remains has been unsolved. The intraoperative compressive force between femoral and tibial components has the advantage of the sequential changes during knee motion. However, the relationship between the compressive force and the postoperative ROM has not yet been clarified. We aimed to evaluate the intraoperative femorotibial compressive force during passive knee motion, and determine the relationship between the compressive force and the postoperative flexion angle. A total of 11 knees in 10 patients who underwent primary cruciate-retaining (CR) TKA (The FINE Total Knee System; Teijin Nakashima Medical Co., Ltd., Okayama, Japan) for osteoarthritis were studied retrospectively, with a mean age of 76 years via a measured resection technique. We developed a customized measurement device mimicking the tibial component with this platform of six load sensors arranged in two rows (medial and lateral) by three tandem sets (anterior, center and posterior): anteromedial (AM), anterolateral (AL); centromedial (CM), centrolateral (CL); and posteromedial (PM), posterolateral compartment (PL) (Fig. 1). At the step of the implant trial, this device was placed on the tibia with compressive force recorded three times, while the knee was subsequently taken from 0° to full flexion manually in 15 seconds with the flexion angle of the knee recorded simultaneously by using an electric goniometer (Fig. 2). Eligibility were evaluated for ROM using a long-armed goniometer preoperatively and at 6 months postoperatively. A p value of < 0.05 was considered significant. The mean compressive force at AM, AL, CM, CL, PM and PL was 0.7, 0.5, 1.3, 1.2, 3.4 and 2.6 kgf, with the peak force of 4.2, 2.5, 4.1, 2.5, 7.3 and 4.7 kgf, respectively. The mean pre- and postoperative extension and flexion angles were −11° and −6°; and 115° and 113°, respectively. There were no significant correlations between the mean force in any
Introduction. Aseptic loosening is the main reason for total knee arthroplasty (TKA) failure, responsible for more than 25% of the revision procedures, with most of the problems occurring with the tibial component. While early loosening can be attributed to failure of primary fixation, late implant loosening is associated with loss of fixation secondary to bone resorption due to altered physiological load transfer to the tibial bone. Several attempts have been made to investigate these changes in bone load transfer in biomechanical simulations and bone remodeling analyses, which can be useful to provide information on the effect of patient, surgery, or design-related factors. On the other hand, these factors have also been investigated in clinical studies of radiographic changes of bone density following TKA. In this study we made an overview of the knowledge obtained from these clinical studies, which can be used to inform clinical decision making and implant design choices. Methods. A literature search was performed to identify clinical follow-up studies that monitored peri-prosthetic bone changes following TKA. Within these studies, effects of the following parameters on bone density changes were investigated: post-operative time,
Osteoarthritic (OA) changes to the bone morphology of the proximal tibia may exhibit load transfer patterns during total knee arthroplasty not predicted in models based on normal tibias. Prior work highlighted increased bone density in transverse sections of OA knees in the proximal-most 10mm tibial cancellous bone. Little is known about coronal plane differences, which could help inform load transfer from the tibial plateau to the tibial metaphysis. Therefore, we compared the cancellous bone density in OA and cadaveric (non-OA) subjects along a common coronal plane. This study included nine OA patients (five women, average age 59.1 ± 9.4 years) and 18 cadaver subjects (four women, average age 39.5 ± 14.4 years). Patients (eight with medial OA and one with lateral OA) received pre-operative CT scans as standard-of-care for a unicompartmental knee replacement. Cadavers were scanned at our institution and had no history of OA which was confirmed by gross inspection during dissection. 3D reconstructions of each proximal tibia were made and an ellipse was drawn on the medial and lateral plateau using a previously published method. A coronal section (Figure 1) to standardize the cohort was created using the medial ellipse center, lateral ellipse center, and the tibial shaft center 71.5mm from the tibial spine. On this section, profile lines were drawn from the medial and lateral ellipse centers, with data collected from the first subchondral bone pixel to a length of 20mm. The Hounsfield Units (HU) along each profile line was recorded for each tibia; a representative graphical distribution is shown in Figure 2. The Area Under the Curve (AUC) was calculated for the medial and lateral sides, which loosely described the stiffness profile through the
Introduction. The vascular anatomy of the femoral head and neck has been previously reported, with the primary blood supply attributed to the deep branch of the Medial Femoral Circumflex Artery (MFCA). This understanding has led to development of improved techniques for surgical hip dislocation for multiple intra-capsular hip procedures including Hip Resurfacing Arthroplasty (HRA). However, there is a lack of information in the literature on quantitative analysis of the contributions of the Lateral Femoral Circumflex Artery (LFCA) to femoral head and neck. Additionally, there is a lack of detailed descriptions in the literature of the anatomic course of the LFCA from its origin to its terminal branches. Materials & Methods. Twelve fresh-frozen human pelvic cadaveric specimens were studied (mean age 54.3 years, range 28–69). One hip per specimen was randomly assigned as the experimental hip, with the contralateral used as a control. Bilateral vascular dissection was performed to cannulate the MFCA and LFCA. Specimens were assigned as either LFCA-experimental or MFCA-experimental. All specimens underwent a validated quantitative-MRI protocol: 2mm slice thickness with pre- and post- MRI contrast sequences (Gd-DTPA diluted with saline at 3:1). In the LFCA-experimental group 15ml of MRI contrast solution was injected into the LFCA cannula. In the MFCA-experimental group 15ml of contrast solution was injected into the MFCA cannula. On the control hip contrast solution was injected into both MFCA and LFCA cannulas, 15ml each (30ml total for the control hip). Following MRI, the MFCA and LFCA were injected with polyurethane compound mixed with barium sulfate (barium sulfate only present in either MFCA or LFCA on each hip). Once polymerization had occurred, hips underwent thin-slice CT scan to document the extra- and intra-capsular course of the LFCA and MFCA. Gross dissection was performed to visually assess all intra-capsular branches of both the MFCA and LFCA and assess for extravasation. Quantitative-MRI analysis was performed based on
Introduction. Highly crosslinked polyethylene (HXLPE) was clinically introduced approximately a decade and a half ago to reduce polyethylene wear rates and subsequent osteolysis. Clinical and radiographic studies have repeatedly shown increased wear resistance, however concerns of rim oxidation and fatigue fracture remain. Although short to intermediate term retrieval studies of these materials are available, the long-term behavior of these materials remains unclear. Methods. Between 2000 and 2015, 115 1st generation HXLPE acetabular liners implanted for 5 or more years were collected and analyzed as part of an ongoing, multi-institutional orthopaedic implant retrieval program. There were two material cohorts based on thermal processing (annealed (n=45) and remelted (n=70)). Each cohort was stratified into two more cohorts based on implantation time (5 – 10 years and >10 years). For annealed components, the intermediate-term liners (n=30) were implanted on average (±SD) for 7.3 ± 1.7 years while the long-term liners (n=15) were implanted for 11.3 ± 1.8 years. For remelted components, the intermediate-term liners (n=59) were implanted on average (±SD) for 7.2 ± 1.3 years while the long-term liners (n=11) were implanted for 11.3 ± 1.2 years. For each cohort, the predominant revision reasons were loosening, instability, and infection (Figure 1). Short-term liners (in-vivo <5ys) from previous studies were analyzed using the same protocol for use as a reference. For oxidation analysis, thin slices (∼200 μm) were taken from the superior/inferior axis and subsequently boiled in heptane for 6 hours to remove absorbed lipids that may interfere with the oxidation analysis. 3mm line profiles (in 100μm increments) were taken perpendicular to the surface at each
Introduction. Periprosthetic bone remodelling after Total Knee Arthroplasty (TKA) may be attributed to local changes in the mechanical strain field of the bone as a result of the stiffness mismatch between high modulus metallic implant materials and the supporting bone. This can lead to significant loss of periprosthetic bone density, which may promote implant loosening, and complicate revision surgery. A novel polyetheretherketone (PEEK) implant with a modulus similar to bone has the potential to reduce stress shielding whilst eliminating metal ion release. Numerical modelling can estimate the remodelling stimulus but rigorous validation is required for use as a predictive tool. In this study, a finite element (FE) model investigating the local biomechanical changes with different TKA materials was verified experimentally using Digital Image Correlation (DIC). DIC is increasingly used in biomechanics for strain measurement on complex, heterogeneous anisotropic material structures. Methodology. DIC was used following a previously validated technique [1] to compare bone surface strain distribution after implantation with a novel PEEK implant, to that induced by a contemporary metallic implant. Two distal Sawbone® femora models were implanted with a cemented cobalt-chromium (CoCr) and PEEK-OPTIMA® femoral component of the same size and geometry. A third, unimplanted, intact model was used as a reference. All models were subjected to standing loads on the corresponding UHMWPE tibial component, and resultant strain data was acquired in six repeated tests. An FE model of each case, using a CT-derived bone model, was solved using ANSYS software. Results and Discussion. The sensitivity of DIC strain measurements was <+130με and experimental error was +230με, or 8.5% of the peak magnitude in the
Delayed postoperative inoculation of orthopaedic implants with persistent wound drainage or bacterial seeding of a haematoma can result in periprosthetic joint infection (PJI). The aim of this in vivo study was to compare the efficacy of vancomycin powder with vancomycin-eluting calcium sulphate beads in preventing PJI due to delayed inoculation. A mouse model of PJI of the knee was used. Mice were randomized into groups with intervention at the time of surgery (postoperative day (POD) 0): a sterile control (SC; n = 6); infected control (IC; n = 15); systemic vancomycin (SV; n = 9); vancomycin powder (VP; n = 21); and vancomycin bead (VB; n = 19) groups. Delayed inoculation was introduced during an arthrotomy on POD 7 with 1 × 105 colony-forming units (CFUs) of a bioluminescent strain of Aims
Methods
INTRODUCTION:. Previous modalities such as static x-rays, MRI scans, CT scans and fluoroscopy have been used to diagnosis both soft-tissue clinical conditions and bone abnormalities. Each of these diagnostic tools has definite strengths, but each has significant weaknesses. The objective of this study is to introduce two new diagnostic, ultrasound and sound/vibration sensing, techniques that could be utilized by orthopaedic surgeons to diagnose injuries, defects and other clinical conditions that may not be detected using the previous mentioned modalities. METHODS:. A new technique has been developed using ultrasound to create three-dimensional (3D) bones and soft-tissues at the articulating surfaces and ligaments and muscles across the articulating joints (Figure 1). Using an ultrasound scan, radio frequency (RF) data is captured and prepared for processing. A statistical signal model is then used for bone detection and bone echo selection. Noise is then removed from the signal to derive the true signal required for further analysis. This process allows for a contour to be derived for the rigid body of questions, leading to a 3D recovery of the bone. Further signal processing is conducted to recover the cartilage and other soft-tissues surrounding the
This study aims to enhance understanding of clinical and radiological consequences and involved mechanisms that led to corrosion of the Precice Stryde (Stryde) intramedullary lengthening nail in the post market surveillance era of the device. Between 2018 and 2021 more than 2,000 Stryde nails have been implanted worldwide. However, the outcome of treatment with the Stryde system is insufficiently reported. This is a retrospective single-centre study analyzing outcome of 57 consecutive lengthening procedures performed with the Stryde nail at the authors’ institution from February 2019 until November 2020. Macro- and microscopic metallographic analysis of four retrieved nails was conducted. To investigate observed corrosion at telescoping junction, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) were performed.Aims
Methods