Cite this article:
Osteoarthritis (OA) is the most common type of arthritis and causes a significant deterioration in patients’ quality of life. The high prevalence of OA as well as the current lack of disease-modifying drugs led to a rise in regenerative medicine efforts. The hope is that this will provide a treatment modality with the ability to alter the course of OA via structural modifications of damaged articular cartilage (AC). Regenerative therapy in OA starts with the concept that administered cells may engraft to a lesion site and differentiate into chondrocytes. However, recent studies show that cells, particularly when injected in suspension, rapidly undergo apoptosis after exerting a transient paracrine effect. If the injected stem cells do not lead to structural improvements of a diseased joint, the high cost of cell therapy for OA cannot be justified, particularly when compared with other injection therapeutics such as corticosteroids and hyaluronic acid. Long-term survival of implanted cells that offer prolonged paracrine effects or possible engraftment is essential for a successful cell therapy that will offer durable structural improvements. In this talk, the history and current status of
The use of mesenchymal stromal cells (MSCs) in regenerative medicine and tissue engineering is well established, given their properties of self-renewal and differentiation. However, several studies have shown that these properties diminish with age, and understanding the pathways involved are important to provide
Little information exists when using cell viability assays to evaluate cells within whole tissue, particularly specific types such as the intervertebral disc (IVD). When comparing the reported methodologies and the protocols issued by manufacturers, the processing, working times, and dye concentrations vary significantly, making the assay's reproducibility a costly and time-consuming trial and error process. This study aims to develop a detailed step-by-step cell viability assay protocol for evaluating IVD tissue. IVDs were harvested from bovine tails (n=8) and processed at day 0 and after 7 days of culture. Nucleus pulposus (NP) and the annulus fibrosus (AF) 3 mm cuts were incubated at room temperature (26˚C) with a Viability/Cytotoxicity Kit containing Calcein AM and Ethidium Ethidium homodimer-1 for 2 hr, followed by flash freezing in liquid nitrogen. Thirty µm sections were placed in glass slides and sealed with nail varnish or Antifade Mounting Medium. The IVD tissue was imaged within the next 4h after freezing using an inverted confocal laser-scanning microscope equipped with 488 and 543 nm laser lines. Cell viability at day 0 (NP: 92±9.6 % and AF:80±14.0%) and day 7 (NP: 91±7.9% and AF:76±20%) was successfully maintained and evaluated. The incubation time required is dependent on the working temperatures and tissue thickness. The calcein-AM dye will not be retained in the cells for more than four hours. The specimen preparation and culturing protocol have demonstrated good cell viability at day 0 and after seven days of culture. Processing times and sample preparation play an essential role as the cell viability components in most kits hydrolyse or photobleach quickly. A step-by-step replicable protocol for evaluating the cell viability in IVD will facilitate the evaluation of cell and toxicity-related outcomes of biomechanical testing protocols and IVD
Patients demonstrate distinct trajectories of recovery after THA. The purpose of this study was to assess the impact of adjacent muscle quality on postoperative hip kinematics. We hypothesized that patients with better adjacent muscle quality (less fatty infiltration) would have greater early biomechanical improvement. Adults undergoing primary THA were recruited. Preoperative MRI was obtained and evaluated via Scoring Hip Osteoarthritis with MRI Scores (SHOMRI, Lee, 2015). Muscle quality was assessed by measuring fat fraction [FF] from water-fat sequences. Biomechanics were assessed preoperatively and six weeks postoperatively during a staggered stance sit-to-stand using the Kinematic Deviation Index (KDI, Halvorson, 2022). Spearman's rho was used to assess correlations between muscle quality and function. Ten adults (5M, 5F) were recruited (average age: 60.1, BMI: 23.79, SHOMRI: 40.6, KDI: 2.96). Nine underwent a direct anterior approach and one a posterior approach. Preoperatively, better biomechanical function was very strongly correlated with lower medius FF (rho=0.89), strongly correlated with lower FF in the minimus (rho=0.75) and tensor fascia lata (TFL) FF (rho=0.70), and weakly correlated with SHOMRI (rho=0.29). At six weeks, greater biomechanical improvement was strongly correlated with lower minimus FF (rho=0.63), moderately correlated with medius FF (rho=0.59), and weakly correlated with TFL FF (rho=0.26) and SHOMRI (rho=0.39). Lastly, medius FF was moderately correlated with SHOMRI (rho=0.42) with negligible correlations between SHOMRI and FF in the minimus and TFL. These findings suggest adjacent muscle quality may be related to postoperative function following THA, explaining some of the variability and supporting specialized muscle rehabilitation or
Low back pain resulting from Interertebral disc (IVD) degeneration is a serious worldwide problem, with poor treatment options available. Notochordal (NC) cells, are a promising therapeutic cell source with anti-catabolic and regenerative effect. However, their behaviour in the harsh degenerate environment is unknown. Porcine NC cells (pNCs), and Human NP cells from degenerate IVDs were cultured in alginate beads to maintain phenotype. Cells were cultured alone or in combination, or co-stimulated with notochordal cell condition media (NCCM), in media to mimic the healthy and degenerate disc environment, together with controls for up to 1 week. Following culture viability, qPCR and proteomic analysis using Digiwest was performed. A small increase in pNC cell death was observed in degenerated media compared to standard and healthy media, with a further decrease seen when cultured with IL-1β. Whilst no significant differences were seen in phenotypic marker expression in pNCs cultured in any media at gene level (ACAN, KRT8, KRT18, FOXA2, COL1A1 and Brachyury). Preliminary Digiwest analysis showed increased protein production for Cytokeratin 18, src and phosphorylated PKC but a decrease in fibronectin in degenerated media compared to standard media. Human NP cells cultured with NCCM, showed a decrease in IL-8 production compared to human NP cells alone when cultured in healthy media. However, gene expression analysis (ACAN, VEGF, MMP3 and IL-1β) demonstrated no significant difference between NP only and NP+NCCM groups. Studying the behaviour of the NCs in in vitro conditions that mimic the in vivo healthy or degenerate niche will help us to better understand their potential for therapeutic approaches. The potential use of NC cell sources for
Background. Chronic low back pain is strongly linked to degeneration of the intervertebral disc (IVD), which currently lacks any targeted treatments. This study explores NPgel, a biomaterial combined with notochordal cells (NC), developmental precursor cells, as a potential solution. NCs, known for anti-catabolic effects on IVD cells, present a promising avenue for regenerating damaged IVD tissue. Methods. Bovine IVDs underwent enzymatic degeneration before NPgel (+/- NC) injection. Degenerated bovine IVDs were cultured under biomechanical loading for 21 days. Histology and immunohistochemistry assessed NC survival, phenotype, and matrix production. Within an in vivo sheep pilot study, NPgel (+/- NC) was injected into degenerated IVDs, blood was taken, and immune cell activation was monitored via flow cytometry over three months post-injection. Results. Within the ex vivo model, IVDs injected with NPgel (+/- NC) exhibited increased matrix expression and deposition. Viable NCs were detected post-culture, indicating survival and matrix production. In the in vivo model, NPgel injection into sheep IVDs did not significantly increase activation of immune cells compared to controls, suggesting no systemic inflammatory effects. Conclusion. NPgel, combined with NCs, shows promise for IVD regeneration. Ex vivo findings indicate NPgel supports NC survival and matrix production. Moreover, in vivo results demonstrate the absence of systemic immunogenic responses post-NPgel injection. This suggests NPgel's potential as a carrier for NCs in IVD
In relation to
Abstract. Objectives. In relation to
Chronic Achilles tendinopathy is characterised by sub-acute inflammation with pro-inflammatory type 1 macrophages (M1), tissue degeneration and consequent partial or total tendon injury. Control of the inflammatory response and M1-to-M2 macrophage polarisation can favour tendon healing both directly and indirectly, by allowing for the regenerative process driven by local mesenchymal stem cells. Ten patients (3 females and 7 males aged between 32 and 71 years old) with partial Achilles tendon injury were treated with injections of autologous peripheral blood mononuclear cells (PB-MNCs). The cell concentrate was obtained from 100-120 cc of each patient's blood with a selective point-of-care filtration system. PB-MNCs remained trapped in the filter and were injected immediately after sampling. Around 60% of the PB-MNC concentrate was injected directly into the injured area, while the remaining 40% was injected in smaller amounts into the surrounding parts of the Achilles tendon affected by tendinosis. All patients were evaluated both clinically with the help of the American Orthopaedic Foot & Ankle Society (AOFAS) scale, and radiologically (MRI examination) at baseline and 2 months after the PB-MNC injection. A clinical reassessment with the AOFAS scale was also performed 6 months after the intervention. The rehabilitation protocol implied full weight-bearing walking immediately after the procedure, light physical activity 3-4 days after the injection, and physiotherapist-assisted stretching exercises and eccentric training. In all patients, functional and radiological signs of tendon healing processes were detected as early as 2 months after a single treatment and the AOFAS scale rose from the initial mean value of 37.5 (baseline) to 85.4 (6 months). Our preliminary results indicate that
Osteoarthritis (OA) is a degenerative disease that lacks regenerative treatment options. Current research focuses on mesenchymal stem cells (MSCs) and Platelet-Rich Plasma (PRP) as
The World Health Organisation (WHO) has included low back pain in its list of twelve priority diseases. Notably, Degenerative disc disease (DDD) presents a large, unmet medical need which results in a disabling loss of mechanical function. Today, no efficient therapy is available. Chronic cases often receive surgery, which may lead to biomechanical problems and accelerated degeneration of adjacent segments. Our consortium partners have developed and studied mesenchymal stem cell-based,
Abstract. Focal articular cartilage defects do not heal and, left untreated, progress to more widespread degenerative changes. A promising new approach for the repair of articular cartilage defects is the application of cell-based
The HIPGEN study funded under EU Horizon 2020 (Grant 7792939) has the aim to investigate the potential of the first
The clinical translation of
Material-based strategies seek to engineer synthetic microenvironments that mimic the characteristics of physiological extracellular matrices for applications in
Study purpose and background. Novel
Purpose and Background. The intervertebral disc is constantly subjected to forces generated by movement. But degeneration can disrupt normal biomechanics, generating uneven and complex loading patterns. Evidence suggests that these forces are converted into voltages through different mechanisms, such as streaming potentials. This implicates voltage-gated ion channels in the biological remodelling response of the disc to loading. These signalling pathways have not been studied, and this incomplete understanding of disc mechanotransduction may hinder
While new biomaterials for
Cells with stem/progenitor characteristics can be isolated from articular cartilage and may have utility in cartilage repair and