Implant-related infection (IRI) is closely related to the local immunity of peri-implant tissues. The generation of
Aim. Osteomyelitis is a difficult-to-treat disease with high chronification rates. The surgical amputation of the afflicted limb sometimes remains as the patients’ last resort. Several studies suggest an increase in mitochondrial fission as a possible contributor to the accumulation of intracellular
Introduction. Particle-induced oxidative stress in cells is a unifying factor that determines toxicity and carcinogenicity potential in biomaterials. A previous study by Bladen et al. showed the production of significant levels of
The purpose of this study was to evaluate whether AGEs induce annulus fibrosus (AF) cell apoptosis and to further explore the mechanism by which this process occurs. AF cells were treated with various concentrations of AGEs for 3 days. Cell proliferation was measured by the Cell Counting Kit-8 (CCK-8) and EdU incorporation assays. Cell apoptosis was examined by the Annexin V/PI apoptosis detection kit and Hoechst 33342. The expression of apoptosis-related proteins, including Bax, Bcl-2, cytochrome c, caspase-3 and caspase-9, was detected by western blotting. In addition, Bax and Bcl-2 mRNA expression levels were detected by RT-PCR. Mitochondrial membrane potential (MMP) and intracellular
Currently, different techniques to evaluate the biocompatibility of orthopaedic materials, including two-dimensional (2D) cell culture for metal/ceramic wear debris and floating 2D surfaces or three-dimensional (3D) agarose gels for UHMWPE wear debris, are used. Moreover, cell culture systems evaluate the biological responses of cells to a biomaterial as the combined effect of both particles and ions. We have developed a novel cell culture system suitable for testing the all three type of particles and ions, separately. The method was tested by evaluating the biological responses of human peripheral blood mononuclear cells (PBMNCs) to UHMWPE, cobalt-chromium alloy (CoCr), and Ti64 alloy wear particles. Methods. Clinically relevant sterile UHMWPE, CoCr, and Ti64 wear particles were generated in a pin-on-plate wear simulator. Whole peripheral blood was collected from healthy human donors (ethics approval BIOSCI 10–108, University of Leeds). The PBMNCs were isolated using Lymphoprep (Stemcell, UK) and seeded into the wells of 96-well and 384-well cell culture plates. The plates were then incubated for 24 h in 5% (v/v) CO. 2. at 37°C to allow the attachment of mononuclear phagocytes. Adherent phagocytes were incubated with UHMWPE and CoCr wear debris at volumetric concentrations of 0.5 to 100 µm. 3. particles per cell for 24 h in 5% (v/v) CO. 2. at 37°C. During the incubation of cells with particles, for each assay, two identical plates were set up in two configurations (one upright and one inverted). After incubation, cell viability was measured using the ATPlite assay (Perkin Elmer, UK). Intracellular oxidative stress was measured using the DCFDA-based
Introduction. Wear debris and metal ions originating from metal on metal hip replacements have been widely shown to recruit and activate macrophages. These cells secrete chemokines and pro-inflammatory cytokines that lead to an adverse local tissue reaction (ALTR), frequently requiring early revision. The mechanism for this response is still poorly understood. It is well documented that cobalt gives rise to apoptosis, necrosis and
Introduction. Periprosthetic joint infection (PJI) and particle-induced osteolysis are closely related to peri-implant local immunity and macrophage function. We previously demonstrated that titanium particles attenuate the immune response of macrophages caused by chronic inflammation [1]. In a separate study, we have determined that UHMWPE wear particles containing vitamin E (VE) induce less osteolysis compared to HXL UHMWPE wear particles in a murine calvarium model [2]. For this study we hypothesized that macrophages exposed to HXL UHMWPE particles containing VE would better maintain their ability to respond to S. aureus compared to HXL UHMWPE without VE. Methods. A gamma-sterilized, HXL UHMWPE tibial bearing containing VE (E1, Biomet, “VE-PE”) and 100kGy irradiated and melted UHMWPE (“CISM 100”) were cryomilled to particles by Bioengineering Solutions (Oak Park, IL). In the first in vitro study, RAW 264.7 mouse macrophages were exposed (inverted co-culture) to either VE-PE particles or CISM100 particles and lipopolysaccharide (LPS) for 1–7 days. Macrophage viability was measured using a cell counting kit (CCK-8). Control group with no particles and a LPS group were also included. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was performed to determine macrophage apoptosis rate in response to particle exposure over time. In the second study, macrophages were exposed to VE-PE or CISM100 particles for 48h, then exposed to LPS for 30 min. Subsequently,
Cite this article: