Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 17 - 17
1 Dec 2022
Ciapetti G Granchi D Perut F Spinnato P Spazzoli B Cevolani L Donati DM Baldini N
Full Access

Fracture nonunion is a severe clinical problem for the patient, as well as for the clinician. About 5-20% of fractures does not heal properly after more than six months, with a 19% nonunion rate for tibia, 12% for femur and 13% for humerus, leading to patient morbidity, prolonged hospitalization, and high costs. The standard treatment with iliac crest-derived autologous bone filling the nonunion site may cause pain or hematoma to the patient, as well as major complications such as infection. The application of mesenchymal autologous cells (MSC) to improve bone formation calls for randomized, open, two-arm clinical studies to verify safety and efficacy. The ORTHOUNION * project (ORTHOpedic randomized clinical trial with expanded bone marrow MSC and bioceramics versus autograft in long bone nonUNIONs) is a multicentric, open, randomized, comparative phase II clinical trial, approved in the framework of the H2020 funding programme, under the coordination of Enrique Gòmez Barrena of the Hospital La Paz (Madrid, Spain). Starting from January 2017, patients with nonunion of femur, tibia or humerus have been actively enrolled in Spain, France, Germany, and Italy. The study protocol encompasses two experimental arms, i.e., autologous bone marrow-derived mesenchymal cells after expansion (‘high dose’ or ‘low dose’ MSC) combined to ceramic granules (MBCP™, Biomatlante), and iliac crest-derived autologous trabecular bone (ICAG) as active comparator arm, with a 2-year follow-up after surgery. Despite the COVID 19 pandemic with several lockdown periods in the four countries, the trial was continued, leading to 42 patients treated out of 51 included, with 11 receiving the bone graft (G1 arm), 15 the ‘high dose’ MSC (200x10. 6. , G2a arm) and 16 the ‘low dose’ MSC (100x10. 6. , G2b arm). The Rizzoli Orthopaedic Institute has functioned as coordinator of the Italian clinical centres (Bologna, Milano, Brescia) and the Biomedical Science and Technologies and Nanobiotechnology Lab of the RIT Dept. has enrolled six patients with the collaboration of the Rizzoli’ 3rd Orthopaedic and Traumatological Clinic prevalently Oncologic. Moreover, the IOR Lab has collected and analysed the blood samples from all the patients treated to monitor the changes of the bone turnover markers following the surgical treatment with G1, G2a or G2b protocols. The clinical and biochemical results of the study, still under evaluation, are presented. * ORTHOUNION Horizon 2020 GA 733288


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 47 - 47
1 Nov 2021
Gindraux F
Full Access

The human amniotic membrane (hAM), derived from the placenta, possesses a low (nay inexistant) immunogenicity and exerts an anti-inflammatory, anti-fibrotic, antimicrobial, antiviral and analgesic effect. It is a source of stem cells and growth factors promoting tissue regeneration. hAM acts as an anatomical barrier with adequate mechanical properties (permeability, stability, elasticity, flexibility, resorbability) preventing the proliferation of fibrous tissue and promoting early neovascularization of the surgical site. Cryopreservation and lyophilization, with sometimes additional decellularization process, are the main preservation methods for hAM storage. We examined the use of hAM in orthopaedic and maxillofacial bone surgery, specially to shorten the induced membrane technique (Gindraux, 2017). We investigated the cell survival in cryopreserved hAM (Laurent, 2014) and the capacity of intact hAM of in vitro osteodifferentiation (Gualdi, 2019). We explored its in vivo osteogenic potential in an ectopic model (Laurent, 2017) and, with Inserm U1026 BioTis, in a calvarial defect (Fenelon, 2018). Still piloted by U1026, decellularization and/or lyophilization process were developed (Fenelon, 2019) and, processed hAM capacities was assessed for guided bone regeneration (Fenelon 2020) and induced membrane technique (Fenelon, 2021) in mice. We reported a limited function of hAM for bone defect management. In this light, we recognized medication-related osteonecrosis of the jaw (MRONJ) as appropriate model of disease to evaluate hAM impact on both oral mucosa and bone healing. We treated height compassionate patients (stage II, III) with cryopreserved hAM. A multicentric randomized clinical study (PHRC-I 2020 funding) will be soon conducted in France (regulatory and ethical authorization in progress)


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 72 - 72
1 Nov 2018
Racine J
Full Access

Exposure to electromagnetic energy has potent signalling effects upon articular cells including chondrocytes, synoviocytes and osteoblasts. Attention has focused on two actions – the altered synthesis of cytokines and enzymes, and the enhanced synthesis of bone and cartilage extracellular matrix (ECM) molecules. In vitro studies with human and bovine articular cartilage have shown increased aggregcan synthesis, glycosaminoglycan content, and biomechanical aggregate modulus with EMF exposure. Osteoarthritic (OA) cartilage responds similarly depending upon the severity of the OA with early OA cartilage responding more robustly. On these bases, two in vivo studies have been done with the Dunkin-Hartley guinea pig model of spontaneous OA. Both studies demonstrated preservation of ECM with increased aggrecan synthesis, matrix glycosaminoglycan and type 2 collagen content, and reduced histological-histochemical (Mankin) scores. Suppression of matrix metalloproteases and IL-1, together with increased TGFb were also observed. Responses to various EMF configurations, in terms of amplitude, frequency, and exposure duration have been described, indicating dose responsiveness. These studies suggest the conclusion that exposure to specific EMFs reduce the progression of early OA. A randomized clinical trial is underway. EMFs may be a disease-modifying therapy for OA, resulting in maintenance of ECM and improvement in the cytokine environment of OA joints


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 3 - 3
1 Mar 2021
To K Zhang B Romain K Mak CC Khan W
Full Access

Abstract. Objective. Articular cartilage damaged through trauma or disease has a limited ability to repair. Untreated, these focal lesions progress to generalized changes including osteoarthritis. Musculoskeletal disorders including osteoarthritis are the most significant contributor to disability globally. There is increasing interest in the use of mesenchymal stem cells (MSCs) for the treatment of focal chondral lesions. There is some evidence to suggest that the tissue type from which MSCs are harvested play a role in determining their ability to regenerate cartilage in vitro and in vivo. In humans, MSCs derived from synovial tissue may have superior chondrogenic potential. Methods. We carried out a systematic literature review on the effectiveness of synovium-derived MSCs (sMSCs) in cartilage regeneration in in vivo studies in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Nineteen studies were included in our review; four examined the use of human sMSCs and the remainder were conducted using sMSCs harvested from animals. Results. Despite the variability of animals, cell harvesting techniques, methods of delivery, and outcome measures, all studies reported successful cartilage repair with sMSC transplantation. Conclusion. We conclude that sMSC transplantation holds promise as a treatment option for focal cartilage defects. We believe that defining the cell population being used, establishing standardized methods for MSC delivery, and the use of objective outcome measures should enable future high-quality studies such as randomized controlled clinical trials to provide the evidence needed to manage chondral lesions optimally. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 28 - 28
1 Apr 2018
Shafizadegan Z Baharlouei H Khoshavi O Garmabi Z Fereshtenejad N
Full Access

Background. Balance impairment and falling are of the major health problems in elderly individuals. The ability to maintain standing balance influences the risk of falling while performing everyday activities. Postural control is the base of balance that is the result of collaboration of visual, vestibular and somatosensory systems. Single leg stance test is a simple clinical method to evaluate static balance. In this test, the center of body mass is on a small support level and need to make corrective movements to create balance by postural control system. Kinesiotaping and stretching of ankle plantar flexor muscles used in physical therapy are effective in improvement of postural balance. Kinesiotaping is effective in maintaining balance by activates cutaneous receptors and promoting alpha motor neuron stimulation. Moreover, stretching is a common treatment used to prevent muscle shortness and increase the range of motion that improves the balance. Aim. Therefore the aim of current study was to compare the effects of these two methods in elderly women and men on ankle plantar flexor muscles which are effective to maintain postural status. Materials and Methods. In a single blind randomized clinical trial, 20 elderly male and 20 elderly female were assigned into 2 groups of kinesiotaping and stretching. Inhibitory Y shape tape was applied on the gastrocnemius in first group. In the stretching group, the muscle was stretched for 60 seconds by 4 times. The static balance was examined before and after the interventions by using single leg stance test. In this test, the subjects were asked to stand bare foot on dominant limb and cross their arms over chest. A maximum time for this test is 30 seconds. The researcher who was assessing balance was unaware to the intervention group. Results. According to paired t-test, Despite progress in time to stance on one leg after the interventions, the changes were not significant (P>0.05). Although the trend was more pronounced in the stretching group, independent t-test results showed no significant difference between groups (P>0.05). While in any of the treatment groups, there was no difference between men and women (P=0.1 and P=0.7 for kinesiotaping and stretching group, respectively). Conclusion. While the results did not show any significant difference after the intervention, but Increasing of the test time, which means improving the balance of participants, is evident. However, changes in the stretching group were more pronounced. Keyword. Single leg stance test, Elderly, Stretching, kinesiotaping, Plantar flexor muscle


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 27 - 27
1 May 2012
Magill P Walsh P Murphy T Mulhall K
Full Access

Introduction. Ischaemic preconditioning (IPC) is a phenomenon whereby a tissue is more tolerant to an insult if it is first subjected to short bursts of sublethal ischaemia and reperfusion. The potential of this powerful mechanism has been realised in many branches of medicine where there is an abundance of ongoing research. However, there has been a notable lack of development of the concept in Orthopaedic surgery. The routine use of tourniquet-controlled limb surgery and traumatic soft tissue damage are just two examples of where IPC could be utilised to beneficial effect in Orthopaedic surgery. Methods. We conducted a randomized controlled clinical trial looking at the role of a delayed remote IPC stimulus on a cohort of patients undergoing a total knee arthroplasty (TKA). We measured the effect of IPC by analysing gene expression in skeletal muscle samples from these patients. Specifically we looked at the expression of Heat shock protein-90 (HSP-90), Catalase and Cyclo-oxygenase-2 (COX-2) at the start of surgery and at one hour into surgery. Gene analysis was performed using real time polymerase chain reaction amplification. As a second arm to the project we developed an in-vitro model of IPC using a human skeletal muscle cell line. A model was developed, tested and subsequently used to produce a simulated IPC stimulus prior to a simulated ischaemia-reperfusion (IR) injury. The effect of this on cell viability was investigated using crystal violet staining. Results. In the clinical arm of the study 4 patients were randomized to a control group and 4 randomized to IPC. Operative and post-operative periods were without any adverse incident. For each gene in question there was a different pattern in expression. COX-2 showed an initial up-regulation of 1.43 (p=0.83) at the start of surgery and a subsequent down-regulation of 0.07 (p=0.01) at one hour into surgery. Catalase expression was lower than control at the start of surgery (0.62, p= 0.46) and at one hour into surgery (0.5, p=0.1). HSP-90 expression was initially lower than control at the start of surgery (0.59, p= 0.07) then up-regulated at one hour into surgery (1.13, p=0.62). In the in-vitro section of the study we found that 15 hours of simulated ischaemia was required for a cell death of approximately 50 % (p=0.00001). The introduction of a simulated IPC stimulus increased cell death at a 1 hour reperfusion time-point (IPC group had 18% more cell death than IR group, p=0.003) and at a 24 hour reperfusion time-point (IPC group had 19% more cell death than IR group, p= 0.00001). At a 72 hours reperfusion time-point the IPC group had a 30% greater survival than the IR group (p=0.000006). Conclusion. Our clinical study was subject to small sample size. Despite this it suggests a particular importance of COX-2 in the IPC mechanism. The in-vitro model we developed is an essential resource for further studies into IPC in Orthopaedic Surgery. Preliminary results from this model point towards the ‘second window of protection’ of IPC as a stronger phenomenon than immediate preconditioning