Fracture nonunion is a severe clinical problem for the patient, as well as for the clinician. About 5-20% of fractures does not heal properly after more than six months, with a 19% nonunion rate for tibia, 12% for femur and 13% for humerus, leading to patient morbidity, prolonged hospitalization, and high costs. The standard treatment with iliac crest-derived autologous bone filling the nonunion site may cause pain or hematoma to the patient, as well as major complications such as infection. The application of mesenchymal autologous cells (MSC) to improve bone formation calls for
Abstract. OBJECTIVES. Application of deep learning approaches to marker trajectories and ground reaction forces (mocap data), is often hampered by small datasets. Enlarging dataset size is possible using some simple numerical approaches, although these may not be suited to preserving the physiological relevance of mocap data. We propose augmenting mocap data using a deep learning architecture called “generative adversarial networks” (GANs). We demonstrate appropriate use of GANs can capture variations of walking patterns due to subject- and task-specific conditions (mass, leg length, age, gender and walking speed), which significantly affect walking kinematics and kinetics, resulting in augmented datasets amenable to deep learning analysis approaches. METHODS. A publicly available (. https://www.nature.com/articles/s41597-019-0124-4. ) gait dataset (733 trials, 21 women and 25 men, 37.2 ± 13.0 years, 1.74 ± 0.09 m, 72.0 ± 11.4 kg, walking speeds ranging from 0.18 m/s to 2.04 m/s) was used as the experimental dataset. The GAN comprised three neural networks: an encoder, a decoder, and a discriminator. The encoder compressed experimental data into a fixed-length vector, while the decoder transformed the encoder's output vector and a condition vector (containing information about the subject and trial) into mocap data. The discriminator distinguished between the encoded experimental data from
Abstract. Objectives. To compare the effectiveness of phonophoresis (PH) and conventional therapeutic ultrasound (US) on the functional and pain outcomes of patients with knee osteoarthritis. Methods. We conducted an electronic search through PubMed, Cochrane Central Register of Clinical Trials (CENTRAL), Web of Science (WOS), and Scopus databases. We screened the retrieved articles to include only English full-text
Introduction. The Achilles tendon is the thickest and strongest tendon in the human body. Even though the tendon is so strong, it is one of the most frequently injured tendons. Treatment of patients after rupture is planned conservatively and surgically. Conservative treatment is generally applied to elderly patients with sedentary lives. If the treatment is surgical, it can be planned as open surgery or percutaneous surgery. In our study with rabbits, we wrapped a membrane made of plga (polylactic-co-glycolic acid) nanotubes impregnated with type 1 collagen around the tendon in rabbits that underwent open Achilles tendon repair surgery. After surgery, biomechanical and histological tests were performed on the tendons. Method. In the study consisting of 24 rabbits, 2 groups were created by
Introduction. Exercise is recommended as first-line treatment for patients with hip osteoarthritis (OA). Interestingly, content and dose of exercise interventions seem to be important for the effect of exercise interventions, but the optimal content and dose is unknown. This warrants
Introduction. There is a lack of evidence-based treatments for patients with chronic pain after total knee arthroplasty (TKA). It is well-established that knee extensor and flexor muscle strength are markedly impaired following TKA, but no studies have examined muscle strength and power in patients with chronic pain after TKA. Therefore, the aim was to investigate if neuromuscular exercises and pain neuroscience education (PNE) were superior to PNE alone for improvement of muscle strength and power in patients with chronic pain after TKA. Method. This report presents the exploratory analysis of a
Glenoid and humeral head bone defects have long been recognized as major determinants in recurrent shoulder instability as well as main predictors of outcomes after surgical stabilization. However, a universally accepted method to quantify them is not available yet. The purpose of the present study is to describe a new CT method to quantify bipolar bone defects volume on a virtually generated 3D model and to evaluate its reproducibility. A cross-sectional observational study has been conducted. Forty CT scans of both shoulders were
The aim of the ongoing projects was to demonstrate the efficacy of autologous bone marrow derived stem cells (MSC) combined with biomaterial to induced new bone formation in a
Artificial Intelligence (AI) is becoming more powerful but is barely used to counter the growth in health care burden. AI applications to increase efficiency in orthopedics are rare. We questioned if (1) we could train machine learning (ML) algorithms, based on answers from digitalized history taking questionnaires, to predict treatment of hip osteoartritis (either conservative or surgical); (2) such an algorithm could streamline clinical consultation. Multiple ML models were trained on 600 annotated (80% training, 20% test) digital history taking questionnaires, acquired before consultation. Best performing models, based on balanced accuracy and optimized automated hyperparameter tuning, were build into our daily clinical orthopedic practice. Fifty patients with hip complaints (>45 years) were prospectively predicted and planned (partly blinded, partly unblinded) for consultation with the physician assistant (conservative) or orthopedic surgeon (operative). Tailored patient information based on the prediction was automatically sent to a smartphone app. Level of evidence: IV.
Secondary bone healing is impacted by the extent of interfragmentary motion at the fracture site. It provides mechanical stimulus that is required for the formation of fracture callus. In clinical settings, interfragmentary motion is induced by physiological loading of the broken bone – for example, by weight-bearing. However, there is no consensus about when mechanical stimuli should be applied to achieve fast and robust healing response. Therefore, this study aims to identify the effect of the immediate and delayed application of mechanical stimuli on secondary bone healing. A partial tibial osteotomy was created in twelve Swiss White Alpine sheep and stabilized using an active external fixator that induced well-controlled interfragmentary motion in form of a strain gradient. Animals were
Total Knee Arthroplasty (TKA) improves the quality of life of osteoarthritic and rheumatoid arthritis patients, however, is associated with moderate to severe postoperative pain. There are multiple methods of managing postoperative pain that include epidural anesthesia but it prevents early mobilization and results in postoperative hypotension and spinal infection. Controlling local pain pathways through intra-articular administration of analgesics is a novel method and is inexpensive and simple. Hence, we assess the effects of postoperative epidural bupivacaine injection along with intra-articular injection in total knee replacement patients. The methodology included 100 patients undergoing TKA
The principal of “function priority, early rehabilitation, and return to sports” is now the goal for sports injury rehabilitation. Neuromuscular electrical stimulation for anterior cruciate ligament (ACL) reconstruction is a rising procedure for early rehabilitation. This paper systematically assessed the effects of neuromuscular electrical stimulation on postoperative ACL reconstruction to provide guidance for physiotherapist and patient when designing a suitable rehabilitation protocol. To evaluate the interventional outcomes of neuromuscular electrical stimulation following ACL reconstruction, we searched PubMed, EMbase, the Cochrane Library, Web of Science and CNKI to collect all
A novel EP4 selective agonist (KMN-159) was developed [1] and has been proven that it can act as an osteopromotive factor to repair critical-size femoral bone defects in rats at a dose-dependent manner [2]. Based on its osteopromotive properties, we hypothesized that KMN-159 could also aid in bone formation for spinal fusion. Therefore, the aim of this study was to investigate its spinal fusion effect in a dorsolateral spinal fusion model in rats. This study was performed on 192, 10-week-old male Wistar rats. The rats were
There remains much debate regarding the optimal method for surgical management of patients with long head of biceps pathology. The aim of this study was to compare the outcomes of tenotomy versus tenodesis. This systematic review and meta-analysis was registered on PROSPERO (ref: CRD42020198658). Electronic databases searched included EMBASE, Medline, PsycINFO, and Cochrane Library. Randomized controlled trials (RCTs) comparing tenotomy versus tenodesis were included. Risk of bias within studies was assessed using the Cochrane risk of bias v2.0 tool and the Jadad score. The primary outcome included patient reported functional outcome measures pooled using standardized mean difference (SMD) and a
Introduction. Osteoarthritis (OA) is a prevalent joint disorder characterized by cartilage degeneration, inflammation, and pain. Current treatments provide only symptomatic relief, necessitating novel molecular targets. The caspase family, known for its roles in apoptosis and inflammation regulation, may additionally influence crucial processes for cartilage homeostasis such as differentiation and proliferation. However, the specific roles of individual caspases in OA pathogenesis remain unclear. This study aims to investigate the involvement of the caspase family in OA and as potential targets for therapy, with a focus on caspase-1 and -8. Method. Chondrocytes from both healthy and OA donors were cultured in 2D and 3D culture models and stimulated with TNF-α or IL-1β. The expression and activation of caspase-1 and -8 was assessed using RT-PCR, ELISA. Transcriptome analysis of OA and healthy cartilage samples, along with Mendelian
Osteoarthritis (OA) leads to articular cartilage degradation, following complex dysregulation of chondrocyte's metabolism towards a catabolic state. Mechanical and biochemical signals are involved and need to be considered to understand the condition. Regulatory network-based models (RNM) successfully simulated the biological activity of the chondrocyte and the transduction of mechanical signals at the molecular and cell levels. However, the knowledge gap between single-cell regulation and intercellular communication in tissue volumes hinders the interpretability of such models at larger scales. Accordingly, a novel tissue-level biochemical model is proposed. We hypothesise that it is possible to simulate interacting network effects through the transport of diluted species in a finite-element model, to grasp relevant dynamics of cell and tissue regulation in OA. Chondrocyte RNM equations were translated into a reaction term of 18 multi-species diffusion model (e.g., 3 anti-inflammatory and 8 pro-inflammatory interleukins, 3 pro-anabolic and 1 pro-catabolic growth factors, 2 nociceptive factors and 2 pro-inflammatory cytokines). Elements with RNM reaction terms represented the chondrocytes and were distributed
Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remain a challenge. A novel surgical technique named Tibial Cortex Transverse Transport has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In present study, we aimed to explore the wound healing effects after undergoing this novel technique via multiple ways. A novel rat model of Tibial Cortex Transverse Transport was established with a designed external fixator and effects on wound healing were investigated. All rats were
This study aims to compare the outcomes of Volar locking plating (VLP) versus percutaneous Kirschner wires (K-wire) fixation for surgical management of distal radius fractures. We systematically searched multiple databases, including MEDLINE for
Gait measurements can vary due to various intrinsic and extrinsic factors, and this variability becomes more pronounced using inertial sensors in a free-living environment. Therefore, identifying and quantifying the sources of variability is essential to ensure measurement reliability and maintain data quality. This study aimed to determine the variability of daily accelerations recorded by an inertial sensor in a group of healthy individuals. Ten participants, four males and six females, with a mean age of 50 years (range: 29–61) and BMI of 26.9 kg/m. 2. (range: 21.4–36.8), were included. A single accelerometer continuously recorded lower limb accelerations over two weeks. We extracted and analyzed the accelerations of three consecutive strides within walking bouts if the time difference between the bouts was more than two hours. Multivariate mixed-effects modeling was performed on both the discretized acceleration waveforms at 101 points (0–100) and the harmonics of the signals in the frequency domain to determine the variance components for different subjects, days, bouts, and steps as the
Introduction. Approximately 20-25% of patients having joint replacement in the UK have moderate-severe frailty. Frailty is associated with poorer outcomes after joint replacement. Targeting frailty pre-operatively with exercise and protein supplementation could improve post-operative outcomes. Prior to conducting a randomised controlled trial (RCT), a feasibility study was necessary to inform trial design and delivery. Method. We conducted a randomised feasibility study with embedded qualitative work. Patients aged ≥65 years, frail and undergoing THR or TKR were recruited from three UK hospitals. Participants were