header advert
Results 1 - 20 of 37
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 173 - 173
1 Dec 2013
Sonntag R Koch S Merziger J Rieger JS Reinders J Reiner T Kretzer JP
Full Access

Background. Migration analysis after total joint arthroplasty are performed using EBRA analysis (Krismer et al., 1997) or - more accurate but also much more cost-intensive and time-consuming – via radiostereometric analysis (RSA). For the latter, additional radiographs from two inclined perspectives are needed in regular intervals in order to define the position of the implant relative to tantalum bone markers which have been implanted during surgery of the artificial joint (Fig. 1). Modern analysis software promises a migration precision along the stem axis of a hip implant of less than 100 μm (Witvoet-Brahm et al., 2007). However, as the analysis is performed semi-automatically, the results are still dependent on the subjective evaluation of the X-rays by the observer. Thus, the present phantom study aims at evaluating the inter- and intra-observer reliability, the repeatability as well as the precision and gives insight into the potential and limits of the RSA method. Materials and Methods. Considering published models, an RSA phantom model has been developed which allows a continuous and exact positioning of the prostheses in all six degrees of freedom (Fig. 2). The position sensitivities of the translative and rotative positioning components are 1 μm and 5 to 24, respectively. The roentgen setup and Model-Based RSA software (3.3, Medis specials bv, Leiden, Netherlands) was evaluated using the SL-PLUS® standard hip stem (size 7, Smith & Nephew, Baar, Switzerland). The inter-observer (10 repetitions) and intra-observer (3 observers) reliability have been considered. Additionally, the influences of the model repositioning and inclination as well as the precision after migration and rotation along the stem axis are investigated. Results and Discussion. Precision along the stem axis was determined to 161 μm (± 230 μm), in the lateral plane 100 μm (± 85 μm) and maximal rotations to 0.524° (± 1.268°). High reproducibility (intra-observer reliability) is reported with relevant influences of the inclination of the implant on the radiograph, in particular for the first clinical scene which serves as a reference. Deviations after translations along the stem axis are 0.37 ± 1.92% and −3.28 ± 6.62% after rotations. In conclusion, the precision given by the software producer of less than 100 μm could not be verified. Beside the limitations from the software, potential sources of errors are the subjective analysis by the observer, a small number of bone markers and the positioning of the implant (patient) during X-ray examination. Though, Model-Based RSA largely outmatches the EBRA approach in terms of measuring implant migration. However, standardization of the X-rays and RSA analysis is recommended


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 89 - 89
1 Sep 2012
Amirault DJ Gross M Hennigar A Laende E Dunbar MJ
Full Access

Purpose. The foam metal backed Advance BioFoam Knee Arthroplasty components utilize a porous titanium coating on the underside of the tibial baseplate, intended to promote bone in-growth and provide a more robust bone-implant interface without cement. There is also a version of the Biofoam Advance that incorporates screwed fixation that allows for augmented fixation with up to four titanium screws; however, it is not clear that this augmentation is necessary. The purpose of this study was to employ radiostereometric analysis (RSA) to compare implant migration in a randomized controlled trial of this implant design with or without screw fixation. Method. Fifty-one patients were randomized to receive a BioFoam total knee replacement (Wright Medical Technologies) with or without screw fixaiton. During surgery, eight tantalum markers, one millimetre in diameter, were inserted into the proximal tibia. Using a calibration box, stereo RSA radiographs were taken post-operatively and then again at six weeks and three, six and 12 months following surgery. Model Based RSA was used with 3D models of the tibial component to measure migration. Health status and functional outcome measures were recorded to quantify functional status of subjects before surgery and at each follow-up interval. Results. The migration results at one year, calculated as maximum total point motion (MTPM) were 1.751.93 mm for with screw fixation and 1.431.41 mm without screw fixation (p value =0.575). The clinical precision of the MTPM metric is 0.33 mm, calculated as the standard deviation of measurements made from double exams of all patients. There were no significant differences between groups for all other outcomes. Conclusion. The migration results at one year indicate that the addition of screws does not impact implant fixation in the short term. Longer term monitoring of the migration of these two implant groups will continue. Although higher than the migration seen with cemented tibial components, the amount of migration is comparable to other uncemented designs


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 14 - 14
1 Jan 2016
Grosser D Mercer G Wilson C Nilsson K Krishnan J
Full Access

Background. Safety and efficacy of novel prostheses relies on the determination of early implant migration and subsequent risk of loosening. Radiostereometric Analysis (RSA) has been used to evaluate the clinical failure risks of femoral stems by reporting distal migration, a measure of stem subsidence, when examining early migration characteristics. The migratory patterns of femoral stems, 24 months postoperatively, have provided a surrogate outcome measure to determine implant stabilisation and predict long-term performance and survivorship. RSA assessed femoral stem migration and provided comparison of the early migration characteristics with published data of a clinically established counterpart. Methods. Twenty five patients undergoing primary total hip arthroplasty were implanted with a hydroxyapatite-coated femoral stem. The median age was 65 years (range, 43–75 years). During surgery tantalum markers were attached onto the distal tip and shoulder of the stem. Eight tantalum markers were inserted into the femur, four placed in each of the greater and lesser trochanter. RSA examinations were performed postoperatively at 4 to 5 days, 6, 12 and 24 months. Eleven patients who had complete RSA follow-up as well as the valid data from five patients were analysed to determine the movement of the femoral stem relative to the femur and were compared to the published data of a clinically established counterpart. Results. At 24 months the magnitude of migration of the femoral stem translations for the y axis of movement was 0.32 mm (range, 0.00 to 2.04 mm) (Figure 1). The data demonstrates that this migration of the femoral stem occurred primarily in the first 6 months postoperatively and that the migration characteristics exhibit a pattern of implant stabilisation between 6 and 24 months. At 24 months the magnitude of migration of the femoral stem rotations for the longitudinal y axis of movement was 0.60. o. (range, 0.08 to 2.08. o. ). The data demonstrates continuing migration of the femoral stem at 12 months postoperatively with early indications of implant stabilisation between 12 and 24 months. At 24 months the mean subsidence/distal migration of the femoral stem was 0.20 mm (range, −2.04 to 0.32 mm) (Figure 2). At 6 months, two patients (12.5%) exhibited subsidence greater than 0.50 mm with one demonstrating a mean subsidence of 2.00 mm. Between 6 and 24 months these two patients exhibited no more than 0.04 mm of subsidence (Figure 3). The mean retroversion rotation of the stem was 0.10. o. (range, −0.99 to 2.08. o. ). One patient rotated more than 2.00. o. into retroversion at 12 and 24 months postoperatively. Conclusions. In comparison the data demonstrates less stem subsidence and retroversion rotation than published data for a cementless hydroxyapatite-coated femoral stem when observing early migration characteristics. The magnitude and pattern of migration exhibited is indicative of good clinical outcomes and is comparable with a clinically established counterpart after short-term follow-up with RSA. These findings and comparisons highlight the early migration characteristics of a hydroxyapatite-coated femoral stem, however the analysis and comparison of the migratory pattern and characteristics over the mid-term follow-up will confirm implant stabilisation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 83 - 83
1 Jan 2016
Nebergall A Malchau H Greene M
Full Access

Introduction

RSA is widely accepted as a precise method to asses wear and migration early in the postoperative period. In traditional RSA, one segment defines both the acetabular shell and the polyethylene liner. However, inserting beads into the liner permits employment of the shell and liner as two separate segments, thus enabling distinct analysis of the precision of three measurement methods in determining wear and acetabular shell migration. The purpose of this in vivo follow-up study was to determine if assigning the shell and liner as one combined, or two individual segments affected the precision of RSA measurements of wear and shell stability.

Methods

The UmRSA program was used to analyze the double examinations of 51 hips to determine if there was a difference in precision among 3 measurement methods: the shell only, the liner only, and the shell + liner combined segment. Tantalum beads were inserted into the liner and pelvic bone surrounding the shell intraoperatively for the purpose of RSA. Polyethylene wear was measured using point motion of the center of the head with respect to 3 different segments: 1) liner only, 2) the shell only and, 3) shell + liner segment. Cup stability was measured by segment motion comparing the stable pelvic segment to 1) the liner segment, 2) the shell only segment, and 3) the shell + liner segment. The Wilcoxon paired signed-ranks test was used to determine differences in condition number and bead counts among the 3 measurement methods (p ≤0.05).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 64 - 64
1 Sep 2012
Humad A Freeman B Moore R Callary S Halldin K
Full Access

Anterior lumbar inter-body fusion (ALIF) is a surgical procedure that is available to chronic lower back pain patients who fail to respond to conservative treatments. Failure to achieve fusion may result in persistence of pain. Fusion of the lumber vertebral segment is more accurately assessed using fine-cut helical Computed tomography (CT) scans (0.25 mm thickness slices). Unfortunately this technique exposes the body to high radiation dose with hazard of increase risk of late malignancy. An alternative imaging tool is radiostereometry (RSA) which developed as a means to determine the magnitude of relative motion between two rigid bodies. In this study we used RSA to detect movement at the fused lumbar segment (ALIF site) during flexion and extension and compare the results obtained with fine-cut helical CT scan using histopathology as final gold standard assessment tool. ALIF of three levels of lumbar spine (L1-L2, L3-L4, and L5-L6) was done in 9 sheep. The sheep divided into three groups (3sheep each). The first group had RSA assessment immediately, 3, and 6 months after surgery. The second group had RSA immediately, 3, 6, 9 months after surgery. The third group had an RSA immediately, 3, 6, 9, 12 months after surgery All the animals were humanly killed immediately after having the last scheduled RSA (group1, group2, and group 3 sheep were killed 6 month, 9month and 12 months after surgery respectively). This followed by in vitro fine cut CT and histopathology after the animals are scarified. Micro CT scan has been also used to identify the area where histopathology slide should be made to pick up fusion. Fine cut CT scan assessment for all sheep were done. The CT scan has been reported by two independent radiologists. Histopathology has been started and will finish in 2 weeks. RSA showed there was significant increasing stiffness of the spine though the fused segments as the time pass on compare to immediate postoperative assessment. CT scan were done and showed variable fusion though out the spinal segments. Histopathology of all sheep has been started and the results will be available in 2 weeks which will be followed by statistical assessment to decide how accurate RSA compare to CT scan in assessment of fusion


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 27 - 27
1 Jul 2020
Hurry J Spurway A Dunbar MJ El-Hawary R
Full Access

Radiostereometric analysis (RSA) allows for precise measurement of interbody distances on X-ray images, such as movement between a joint replacement implant and the bone. The low radiation biplanar EOS imager (EOS imaging, France) scans patients in a weight-bearing position, provides calibrated three-dimensional information on bony anatomy, and could limit the radiation during serial RSA studies. Following the ISO-16087 standard, 15 double exams were conducted to determine the RSA precision of total knee arthroplasty (TKA) patients in the EOS imager, compared to the standard instantaneous, cone-beam, uniplanar digital X-ray set-up. At a mean of 5 years post-surgery, 15 TKA participants (mean 67 years, 12 female, 3 male) were imaged twice in the biplanar imager. To reduce motion during the scan, a support for the foot was added and the scan speed was increased. The voltage was also increased compared to standard settings for better marker visibility over the implant. A small calibration object was included to remove any remaining sway in post-processing. The 95% confidence interval precision was 0.11, 0.04, and 0.15 mm in the x, y, and z planes, respectively and 0.15, 0.20, and 0.14° in Rx, Ry, and Rz. Two participants had motion artifacts successfully removed during post-processing using the small calibration object. With faster speeds and stabilization support, this study found an in vivo RSA precision of ≤ 0.15 mm and ≤ 0.20° for TKA exams, which is within published uniplanar values for arthroplasty RSA. The biplanar imager also adds the benefits of weight bearing imaging, 3D alignment measurements, a lower radiation dose, and does not require a reference object due to known system geometry and automatic image registration


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 90 - 90
1 Feb 2020
Gascoyne T Parashin S Zarrabian M
Full Access

Introduction. This research determines the feasibility of radiostereometric analysis (RSA) as a diagnostic tool for assessing fusion following spinal arthrodesis. Further, to estimate clinical thresholds for precision and accuracy of the proposed method in the cervical and lumbar spine. Methods. Two-level lumbo-sacral and three-level cervical posterior arthrodesis procedures were performed on an artificial spine model and a cadaveric spine (Figure 1). Using a spring-loaded inserter, RSA marker beads were placed within each of the L4-S1 and C3-C6 vertebrae, then analyzed for optimal bead distribution and detection. RSA imaging consisted of 12 double exams (24 exams) of the cervical and lumbar regions for both the Sawbones and cadaveric spine to assess precision of measurement under zero-displacement conditions, defined as the 95% confidence interval of error. Accuracy assessment was performed on the Sawbones model in which the middle vertebrae (L5 and C4-C5) were moved relative to the superior (L4 and C3) and inferior (S1 and C6) vertebrae by known, incremental displacements (Figure 2). RSA images were obtained at each displacement (Figure 3). Accuracy was defined as the mean difference between known and measured displacements. Results. Median RSA bead detection was 100% in cervical vertebrae and >75% in lumbar vertebrae in the artificial and cadaveric models. Translational RSA precision for both spine models was better than 0.25mm and 0.82mm for the lumbar and cervical regions, respectively. Rotational precision was better than 0.4° and 1.9° for the lumbar and cervical regions, respectively. RSA accuracy for the artificial spine overall demonstrated less than 0.11 mm translational bias (margin < ±0.02 mm) and less than 0.22° rotational bias (margin < ±0.15°). Discussion and Conclusion. This study demonstrates that RSA achieves sufficient precision and accuracy to detect intervertebral micromotion for the purpose of assessing arthrodesis. Well dispersed bead placement is critical to achieving sufficient accuracy and avoiding occlusion by metal hardware. The results of this work will aid in the development of a clinical study to assess arthrodesis in patients. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 43 - 43
1 Aug 2020
Laende E Dunbar MJ Richardson G
Full Access

The dual mobility design concept for acetabular components is intended to reduce the risk of dislocation and increase range of motion, but the wear pattern of this design is unclear and may have implications in implant fixation. Additionally, the solid back cups do not have the option for supplementary screw fixation, providing an additional smooth articulating surface for the liner to move against. The objective of this study was to assess cup fixation by measuring implant migration as well as proximal femoral head penetration to evaluate wear performance. Thirty subjects were recruited in a consecutive series prospective study and received dual mobility uncemented acetabular components with mobile bearing polyethylene liners through a direct lateral approach. Femoral stems were cemented or uncemented. All subjects had 28 mm femoral heads. The femur, acetabulum, and non-articulating surface of the mobile polyethylene liner were marked with tantalum beads. Radiostereometric analysis (RSA) exams were performed post-operatively and at 6 weeks, 3 months, 6 months, 1 year, 2 years, and 3 years. Oxford 12 Hip and Satisfaction questionnaire responses were recorded. Mobile bearing motion was assessed under fluoroscopy for a single case under loaded and unloaded conditions. Twenty-nine subjects (17 female) proceeded to surgery. Subjects were 63±11 years of age with BMIs of 28±4.7 kg/m2. Cup migration reached 0.16 ± 0.31 mm of proximal translation and 0.29±1.03 degrees of sagittal rotation at three years. A single individual had more than 3 degrees of cup rotation, occurring by 6 months and not substantially increasing after this time. Proximal translation was low for this subject. Wear of the highly cross-linked mobile bearings was 0.18 ± 0.30 mm of proximal femoral head penetration from 0 to 3 years. The mean wear rate from 1 to 3 years was 0.02 mm/year. One subject was an outlier for wear, with more than 1 mm of femoral head penetration at 1 year. However, wear did not increase after 1 year for this subject and cup migrations were below average for this individual. Similarly, the outlier for cup rotation had below average wear. Satisfaction (out of 100%) improved from 25±27% to 96±7% pre-operatively to 3 years post-operatively. Oxford 12 scores (best possible score of 48) improved from 21±7 to 43±7 over the same period. The fluoroscopic case study demonstrated visible motion of the mobile bearing during hip rotation tasks. The overall migration of the cup was low and demonstrated favorable patterns suggesting low risk of aseptic loosening. Wear rates are also within the expected range of 0 to 0.06 mm/year for highly cross-linked polyethylene. The combination of low subsidence and low sagittal rotations of the cup, and low wear of the polyethylene are favorable predictors of good long-term performance


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 56 - 56
1 Feb 2020
Broberg J Howard J Lanting B Vasarhelyi E Yuan X Naudie D Teeter M
Full Access

Introduction. Surgeons performing a total knee replacement (TKR) have two available techniques available to help them achieve the proper bone resections and ligament tension – gap balancing (GB) and measured resection (MR). GB relies on balancing ligaments prior to bony resections whereas bony resections are made based on anatomical landmarks in MR. Many studies have been done to compare the joint kinematics between the two techniques, however the results have been varied. These studies were not done with anatomically designed prostheses. The Journey II (Smith & Nephew, Memphis, TN) is one such design which attempts to mimic the normal knee joint structure to return more natural kinematics to the joint, with emphasis on eliminating both paradoxical anterior motion and reduced posterior femoral rollback. Given the design differences between anatomical and non-anatomical prostheses, it is important to investigate whether one technique provides superior kinematics when an anatomical design is used. We hypothesize that there will be no difference between the two techniques. Methods. A total of 56 individuals were recruited to receive a Journey II prosthesis and randomized evenly to groups where the GB technique or MR technique is used. For all patients in the study, a series of radiostereometric analysis (RSA) images were acquired at 3-months post-operatively at different knee flexion angles, ranging in 20° increments from 0° to 120°. Model-based RSA software (RSACore, Leiden, Netherlands) was used to obtain the 3D positions and orientations of the femoral and tibial implant components, which were in turn used to obtain kinematic measures (contact locations and magnitude of excursion) for each condyle. Results. Preliminary results for the anterior-posterior (AP) contact locations from 33 patients (18 GB, 15 MR) are displayed in Figure 1. There were no significant differences in medial and lateral contact locations between the GB and MR groups for all angles of flexion. However, the pattern of medial contact for the MR technique displays more paradoxical anterior motion at mid-flexion (40°–60°) than the GB group. There were no significant differences in magnitude of excursion between groups on both medial (mean difference=1.96 mm, p=0.16) and lateral (mean difference=0.21 mm, p=0.79) condyles, indicating that posterior femoral rollback is similar between groups. Conclusions. Early results suggest that the MR technique is associated with slightly more abnormal kinematics than the GB technique when an anatomical prosthesis design is used for TKR. The GB technique may be more appropriate than MR technique for implanting anatomically designed knee replacements. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 2 - 2
1 Feb 2020
Turgeon T Burnell C Hedden D Gascoyne T Bohm E
Full Access

Introduction. Total hip arthroplasty (THA) is a highly successful procedure achieving excellent clinical outcomes beyond 10 years post-surgery. With exception of periprosthetic infection, dislocation is the most common cause of failure in THA. A novel reverse total hip (RTH) replacement has been developed to address dislocation through reversal of the typical THA articulation in which a femoral cup and acetabular ball interlock at the extremes of motion to enhance mechanical stability in all planes. The purpose of this study was to assess the safety and efficacy of this novel RTH in a series of 22 patients and to monitor implant fixation using radiostereometric analysis (RSA). Methods. Twenty two patients with end-stage osteoarthritis of the hip were enrolled between 2017 and 2019 at a single center. All surgeries were performed by a group of four high-volume fellowship-trained arthroplasty surgeons. All patients received at least 1 acetabular cup screw and RSA markers inserted into the acetabulum and proximal femur. Follow-up time points were 6 weeks, 6, 12 and 24 months and included patient reported outcome measures (HOOS, Oxford-12, Harris Hip Score, SF-36 and Satisfaction) as well as RSA assessment. Results. The patient cohort consisted of 11 females and 11 males with mean age of 70.8 years and body mass index 31.3 kg/m. 2. At the time of writing, 21, 15 and 3 patients had completed their 6-month, 1- and 2-year clinical follow-ups, respectively. There was a significant improvement in function and pain with the RTH between pre-operative and six and twelve month follow up as collected by the HOOS, Oxfrod-12, HHS, WOMAC, EQ-5D and SF-36 PCS with p<0.001 for all. The sole exception was the SF-36 MCS which had a non-statistical improvement. Eighteen of 20 patients were satisfied or very satisfied with the outcome of surgery. Average vertical migration of the acetabular cup at 6 and 12 months was 0.082 mm and 0.110 mm, respectively. Average distal migration of the femoral stem at 6 and 12 months was 0.015 mm and 0.035 mm, respectively. Conclusions. Early results indicate acceptable safety and efficacy of this novel RTH for treating osteoarthritis of the hip. The femoral and acetabular components both appear well fixed at near-term follow-up, as assessed with RSA. Further follow-up will determine if these results are maintained at 24 months post-surgery. Additional patient enrollment will assess acetabular cup fixation without the use of screws. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 55 - 55
1 Feb 2020
Broberg J Howard J Lanting B Vasarhelyi E Yuan X McCalden R Naudie D Teeter M
Full Access

Introduction. Despite improvements in the survivorship of total knee replacements (TKR) over the years, patient satisfaction following TKR has not improved, with approximately 20% of patients recording dissatisfaction with their new knee joint. It is unclear why many patients feel this way, but it may relate in part to implant designs that do not provide a “natural” feeling knee. Implant manufacturers continue to introduce new concepts for implant design, which are essential for reaching the goal of a “normal” knee after TKR surgery. The Journey II TKR (Smith & Nephew) was developed with this goal in mind. Its anatomical design attempts to mimic the normal knee joint structure to return more natural kinematics to the joint, with emphasis on eliminating both paradoxical anterior motion and reduced posterior femoral rollback. Our objective is to examine patients receiving the Journey II TKR to measure the knee joint contact kinematics of the Journey II TKR compared to a non-anatomically designed implant by the same manufacturer. We hypothesize that the Journey II TKR will have more natural contact kinematics that differ from the non-anatomically designed implant. Methods. A total of 28 individuals were recruited to receive a Journey II TKR, matching an existing prior cohort with a non-anatomical design from the same manufacturer (Legion TKR, Smith & Nephew). For both groups, a series of radiostereometric analysis (RSA) images were acquired at different knee flexion angles, ranging in 20° increments from 0° to 120°. Model-based RSA software (RSACore, Leiden, Netherlands) was used to obtain the 3D positions and orientations of the femoral and tibial implant components, which were in turn used to obtain kinematic measures (contact locations and magnitude of excursion) for each condyle. Results from the Journey II TKR group at 3 months post-operation were compared to the 2-year post-operative measurements from the Legion TKR group. Results. Preliminary results for the anterior-posterior (AP) contact locations from 38 patients (15 Journey II TKR, 23 Legion TKR) are displayed in Figure 1. The Journey II TKR group showed more anterior contact medially and laterally relative to the Legion TKR group at many angles, however the overall pattern from 0°–120° was similar. There was no significant difference between groups with respect to magnitude of excursion on both medial (mean difference=1.29 mm, p=0.19) and lateral (mean difference=0.69 mm, p=0.60) condyles. Conclusions. Early results suggest that paradoxical anterior motion and reduced posterior femoral rollback are present in the anatomically designed Journey II TKR, suggesting that it does not provide substantially different knee kinematics compared to the non-anatomically designed Legion TKR. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 22 - 22
1 Feb 2020
Van De Kleut M Athwal G Yuan X Teeter M
Full Access

Introduction. Reverse total shoulder arthroplasty (RTSA) is rapidly being adopted as the standard procedure for a growing number of shoulder arthropathies. Though short-term outcomes are promising, mid- and long-term follow-ups present a number of complications – among them, humeral stem and glenosphere component loosening. Though not the primary complication, previously reported aseptic loosening required revision in 100% of cases. As the number of patients undergoing RTSA increases, especially in the younger population, it is important for surgeons to identify and utilize prostheses with stable long-term fixation. It has previously been shown in the hip and knee literature that implant migration in the first two years following surgery is predictive of later failure due to loosening in the 5=10-year postoperative window. The purpose of this study is to, for the first time, evaluate the pattern and total magnitude of implant migration in reverse shoulder arthroplasty using the gold standard imaging technique radiostereometric analysis (RSA). Methods. Forty patients were prospectively randomized to receive either a cemented or press-fit humeral stem, and a glenosphere secured to the glenoid with either autologous bone graft or 3D printed porous titanium for primary reverse total shoulder arthroplasty. Following surgery, participants are imaged using RSA, a calibrated, stereo x-ray technique. Radiographs are acquired at 6 weeks (baseline), 3 months, 6 months, 1 year, and 2 years. Migration of the humeral stem and glenosphere at each time point is compared to baseline. Migration of the prostheses is independently compared between humeral stem fixation groups and glenosphere fixation groups using a two-way repeated measures ANOVA with Tukey's test for multiple comparisons. Results. Follow-ups are ongoing and preliminary results are presented. Significant differences were observed at the 6-month and 1-year time points for superior-inferior translation (p = 0.0067, p = 0.0048), and total three-dimensional translation (p = 0.0011, p = 0.0272) between humeral stems, with press-fit humeral stems subsiding significantly more than cemented stems. Migration between the 6-month and 1-year time points was minimal for both stem fixation groups (less than 0.2 mm). No significant differences were observed along any axis at any time point for the glenosphere fixation groups. Conclusion. There is a trend towards increased subsidence with the use of press-fit stems compared to cemented stems in the first six months postoperatively, as is expected. Both implant fixation techniques demonstrate stability from six months through one year, and this trend is expected through two-year follow-up. Similarly, both glenosphere fixation techniques demonstrate immediate and stable fixation through one year


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 50 - 50
1 Jul 2020
Gascoyne T Parashin S Zarrabian M
Full Access

The purpose of this research was to determine the feasibility of radiostereometric analysis (RSA) as a diagnostic tool for assessing non-union following spinal arthrodesis procedures. Further, to estimate clinical thresholds for precision and accuracy of the proposed method in the cervical and lumbar spine. A three-level lumbo-sacral and a four-level cervical posterior arthrodesis procedures were performed on an artificial spine model (Sawbones, WA). Using a spring loaded inserter (RSA Biomedical, Sweden), eight to ten RSA markers were placed within each of the L4 and L5 segments in the spinous process (L4 only), lamina, transverse processes, posterior and anterior (down the pedicle) wall of the vertebral body. Eight to ten markers were placed within the proximal sacrum (S1) at the medial and lateral crests, tuberosity, and within the sacral canal wall. Four to eight RSA markers were placed into the C3-C6 lateral masses. Titanium screws and rods were applied to the spinal segments. Identical procedures were then performed on a cadaveric spine using similar bead placement and hardware. RSA imaging consisted of 12 double exams (24 exams) of the cervical and lumbar regions for both the Sawbones and cadaveric spine to assess precision of measurement under zero-displacement conditions. The most distal vertebrae were considered the datum against which the movement of all other vertebrae was compared. The artificial spine was then dismantled for accuracy assessment in which the middle vertebrae (L5 and C4-C5) were moved relative to the superior (L4 and C3) and inferior (S1 and C6) vertebrae by known, incremental displacements on an imaging phantom device. Displacements occurred along the superior-inferior, anterior-posterior, and flexion-extension (rotational) axes of motion. RSA images were obtained at each displacement. Image analysis was performed using model-based software (RSACore v3.41, Leiden, Netherlands) to visualize implanted RSA beads in 3-D space. Precision was defined as the 95% confidence interval of error in measuring zero-displacement. Accuracy was defined as the mean difference (with 95% confidence interval) between the known and measured displacement. The rate of RSA bead detection was high with 5–8 implanted beads being visible in both the lumbar and cervical regions of the artificial and cadaveric spines. Translational RSA precision for both spines was better than 0.25 mm and 0.82 mm for the lumbar and cervical regions, respectively. Rotational precision was better than 0.40° and 1.9° for the lumbar and cervical regions, respectively. RSA accuracy for the artificial spine overall demonstrated less than 0.11 mm translational bias (margin < ±0.02 mm) and less than 0.22° rotational bias (margin < ±0.15°). This study demonstrates that RSA achieves sufficient precision and accuracy to detect intervertebral micromotion for the purpose of assessing arthrodesis. Well dispersed RSA bead placement is critical to achieving sufficient accuracy as well as avoiding occlusion by metal hardware. Cervical bead implantation is particularly sensitive to bead clustering due to small vertebrae size and proximity to critical structures. The results of this work will aid in the development of a clinical study to assess arthrodesis in patients


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 32 - 32
1 Jul 2020
Perelgut M Teeter M Lanting B Vasarhelyi E
Full Access

Increasing pressure to use rapid recovery care pathways when treating patients undergoing total hip arthroplasty (THA) is evident in current health care systems for numerous reasons. Patient autonomy and health care economics has challenged the ability of THA implants to maintain functional integrity before achieving bony union. Although collared stems have been shown to provide improved axial stability, it is unclear if this stability correlates with activity levels or results in improved early function to patients compared to collarless stems. This study aims to examine the role of implant design on patient activity and implant fixation. The early follow-up period was examined as the majority of variation between implants is expected during this time-frame. Patients (n=100) with unilateral hip OA who were undergoing primary THA surgery were recruited pre-operatively to participate in this prospective randomized controlled trial. All patients were randomized to receive either a collared (n=50) or collarless (n=50) cementless femoral stem. Patients will be seen at nine appointments (pre-operative, < 2 4 hours post-operation, two-, four-, six-weeks, three-, six-months, one-, and two-years). Patients completed an instrumented timed up-and-go (TUG) test using wearable sensors at each visit, excluding the day of their surgery. Participants logged their steps using Fitbit activity trackers and a seven-day average prior to each visit was recorded. Patients also underwent supine radiostereometric analysis (RSA) imaging < 2 4 hours post-operation prior to leaving the hospital, and at all follow-up appointments. Nineteen collared stem patients and 20 collarless stem patients have been assessed. There were no demographic differences between groups. From < 2 4 hours to two weeks the collared implant subsided 0.90 ± 1.20 mm and the collarless implant subsided 3.32 ± 3.10 mm (p=0.014). From two weeks to three months the collared implant subsided 0.65 ± 1.54 mm and the collarless implant subsided 0.45 ± 0.52 mm (p=0.673). Subsidence following two weeks was lower than prior to two weeks in the collarless group (p=0.02) but not different in the collared group. Step count was reduced at two weeks compared to pre-operatively by 4078 ± 2959 steps for collared patients and 4282 ± 3187 steps for collarless patients (p=0.872). Step count increased from two weeks to three months by 6652 ± 4822 steps for collared patients and 4557 ± 2636 steps for collarless patients (p=0.289). TUG test time was increased at two weeks compared to pre-operatively by 4.71 ± 5.13 s for collared patients and 6.54 ± 10.18 s for collarless patients (p=0.551). TUG test time decreased from two weeks to three months by 7.21 ± 5.56 s for collared patients and 8.38 ± 7.20 s for collarless patients (p=0.685). There was no correlation between subsidence and step count or TUG test time. Collared implants subsided less in the first two weeks compared to collarless implants but subsequent subsidence after two weeks was not significantly different. The presence of a collar on the stem did not affect patient activity and function and these factors were not correlated to subsidence, suggesting that initial fixation is instead primarily related to implant design


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 8 - 8
1 Apr 2019
Wilson C Critchely O Callary S Campbell D
Full Access

Introduction & aims. The magnitude and pattern of acceptable migration in clinically successful cementless stems is not well understood. Radiostereometric analysis (RSA) is a well-recognised method of assessing implant migration. Previous studies have reported long term RSA results for cemented stems. The aim of this study was to assess the long-term migration characteristics of the Corail hydroxyapatite-coated cementless stem at 10 years using RSA. Method. A prospective cohort of 30 patients undergoing primary total hip arthroplasty for primary hip osteoarthritis were enrolled into a study to characterise the migration behaviour of a cementless stem. Tantalum markers were attached to the stem and placed in the bone intraoperatively, allowing for RSA measurements to be taken in vivo. Previous 5-year results have been presented. A total of 14 patients (total 15 hips, one bilateral) with mean age 82 years (range, 69–92 years) underwent repeat long-term RSA radiographs at minimum 10 years post op. The mean time to follow up was 13.9 years (range, 13.3–14.4 years). The RSA radiographs were analysed to assess for implant rotation and translation. Results. None of the 14 patients (15 hips) followed up have been revised. The migration (rotation and translation) at 6 months, 1 year, 2 years, and 6 years has been described previously. No stems had additional subsidence of more than 0.25 mm between 6 months and 6 years. The resultant mean subsidence between 2 years and 6 years was 0.03 mm, which is below the limit measurable by RSA. The long-term, 10-year results, on implant rotation and translation will be presented. Conclusions. The Corail stem exhibited variable subsidence within the first 6 months after which there is persistent stabilisation through to 6 years. 10-year results on long-term migration show no further migration. These results can be used as a gold standard for other uncemented stems


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 56 - 56
1 Feb 2020
Perelgut M Lanting B Teeter M
Full Access

Background. There is increasing impetus to use rapid recovery care pathways when treating patients undergoing total hip arthroplasty (THA). The direct anterior (DA) approach is a muscle sparing technique that is believed to support these new pathways. Implants designed for these approaches are available in both collared and collarless variations and understanding the impact each has is important for providing the best treatment to patients. Purpose/Aim of Study. This study aims to examine the role of implant design on implant fixation and patient recovery. Materials and Methods. Patients (n=50) with unilateral hip OA who were undergoing primary DA THA surgery were recruited pre-operatively to participate in this prospective randomized controlled trial. All patients were randomized to receive either a collared (n=25) or collarless (n=25) cementless, fully hydroxyapatite coated femoral stem. Patients were seen at nine appointments (pre-operative, <24 hours post-operation, two-, four-, six-weeks, three-, six-months, one-, and two-years). Patients underwent supine radiostereometric analysis (RSA) imaging <24 hours post-operation prior to leaving the hospital, and at all follow-up appointments. Patients also completed an instrumented timed up-and-go (TUG) test using wearable sensors at each visit, excluding the day of their surgery. Participants logged their steps using Fitbit activity trackers and a seven-day average prior to each visit was recorded. Findings/Results. Twenty-two patients that received a collared stem and 27 patients that received a collarless stem have been assessed. There were no demographic differences between groups. From <24 hours to two weeks the collared implants subsided 0.90 ± 1.20 mm and the collarless implants subsided 3.80 ± 3.37 mm (p=0.001). From two weeks to three months the collared implants subsided 0.67 ± 1.61 mm and the collarless implants subsided 0.45 ± 0.46 mm (p=0.377). Step count was reduced at two weeks to 3108 ± 1388 steps for collared patients and 2340 ± 1685 steps for collarless patients (p=0.072). Step count was increased at three months to 8939 ± 3494 steps for collared patients and 6114 ± 2529 steps for collarless patients (p=0.034). TUG test time was increased at two weeks compared to pre-operatively by 3.45 ± 6.01 s for collared patients and 2.29 ± 4.92 s for collarless patients (p=0.754). TUG test time decreased from two weeks to three months by 6.30 ± 6.05 s for collared patients and 5.68 ± 4.68 s for collarless patients (p=0.922). Conclusions. Collared implants subsided less in the first two weeks compared to collarless implants but subsequent subsidence after two weeks was not significantly different. Presence of a collar on the stem impacted patient activity but not function. This suggests that both the implant design as well as the surgical technique may play a role in the patient's early post-operative experience


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 14 - 14
1 Apr 2019
Van De Kleut M Athwal G Yuan X Teeter M
Full Access

Introduction. Total shoulder arthroplasty is the fastest growing joint replacement in recent years, with projected compound annual growth rates of 10% for 2016 through 2021 – higher than those of both the hip and knee combined. Reverse total shoulder arthroplasty (RTSA) has gained particular interest as a solution for patients with irreparable massive rotator cuff tears and failed conventional shoulder replacement, for whom no satisfactory intervention previously existed. As the number of indications for RTSA continues to grow, so do implant designs, configurations, and fixation techniques. It has previously been shown that continuous implant migration within the first two years postoperatively is predictive of later loosening and failure in the hip and knee, with aseptic loosening of implant components a guaranteed cause for revision in the reverse shoulder. By identifying implants with a tendency to migrate, they can be eliminated from clinical practice prior to widespread use. The purpose of this study is to, for the first time, evaluate the pattern and magnitude of implant component migration in RTSA using the gold standard imaging technique radiostereometric analysis (RSA). Methods. Forty patients were prospectively randomized to receive either a cemented or press-fit humeral stem, and a glenosphere secured to the glenoid with either autologous bone graft or 3D printed porous titanium (Aequalis Ascend Flex, Wright Medical Group, Memphis, TN, USA) for primary reverse total shoulder arthroplasty. Following surgery, partients are imaged using RSA, a calibrated, stereo x-ray technique, at 6 weeks (baseline), 3 months, 6 months, 1 year, and 2 years. Migration of the humeral stem and glenosphere at each time point is compared to baseline. Preliminary results are presented, with 15 patients having reached the 6-month time point by presentation. Results. Implant migration of ten participants at the 3-month time point is presented. Maximum total point motion (MTPM) is a measure of translation and rotation of the point on the implant that has moved the most from baseline. Average MTPM ± SD of the humeral stem is 1.18 ± 0.65 mm and 0.98 ± 0.46 mm for press-fit (n = 6) and cemented (n = 4) stems, respectively; and 0.25 ± 0.09 mm and 0.47 ± 0.24 mm for bone graft (n = 4) and porous titanium (n = 6) glenosphere fixations, respectively, at the 3-month time point. Conclusion. There is a trend towards increased migration with the use of press-fit humeral stems and porous titanium glenosphere fixation, though no conclusions can be made from the current sample size. Further, though differences in migration magnitude may be observed at early postoperative time points, it is expected that all fixation techniques will show stability from 1 to 2 years postoperatively


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 57 - 57
1 Dec 2016
Laende E Dunbar M Richardson G Reardon G Amirault D
Full Access

The trabecular metal Monoblock TKR is comprised of a porous tantalum base plate with the polyethylene liner embedded directly in the porous metal. An alternative design, the trabecular metal Modular TKR, allows polyethylene liner insertion into the locking base plate after base plate implantation, but removes the low modulus of elasticity that was inherent in the Monoblock design. The purpose of this study was to compare the fixation of the Monoblock and Modular trabeucular metal base plates in a randomised controlled trial. Fifty subjects (30 female) were randomly assigned to receive the uncemented trabecular metal Monoblock or uncemented trabecular metal Modular knee replacement. A standard procedure of tantalum marker insertion in the proximal tibial and polyethylene liner was followed with uniplanar radiostereometric analysis (RSA) examinations immediately post-operatively and at 6 week, 3 month, 6 month, and 12 month follow-ups. The study was approved by the Research Ethics Board and all subjects signed an Informed Consent Form. Twenty-one subjects received Monoblock components and 20 received Modular components. An intra-operative decision to use cemented implants occurred in 5 cases and 4 subjects did not proceed to surgery after enrollment. The clinical precision of implant migration measured as maximum total point motion (MTPM) was 0.13 mm (upper limit of 95% confidence interval of double exams). Implant migration at 12 months was 0.88 ± 0.64 mm (mean and standard deviation; range 0.21 – 2.84 mm) for the Monoblock group and 1.60 ± 1.51 mm (mean and standard deviation; range 0.27 – 6.23 mm) for the Modular group. Group differences in 12 month migration approached clinical significance (p = 0.052, Mann Whitney U-test). High early implant migration is associated with an increased risk for late aseptic loosening. Although not statistically significant, the mean migration for the Modular component group was nearly twice that of the Monoblock, which places it at the 1.6 mm threshold for “unacceptable” early migration (Pijls et al 2012). This finding is concerning in light of the recent recall of a similar trabecular metal modular knee replacement and adds validity to the use of RSA in the introduction of new or modified implant designs. Reference: Pijls, B.G., et al., Early migration of tibial components is associated with late revision: a systematic review and meta-analysis of 21,000 knee arthroplasties. Acta Orthop, 2012. 83(6): p. 614–24


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 55 - 55
1 Dec 2016
Lanting B Thoren J Yuan X McCalden R McAuley J MacDonald S Vasarhelyi E Howard J Naudie D Teeter M
Full Access

Adequate fixation of implant components is an important goal for all arthroplasty procedures. Aseptic loosening is one of the leading causes of revision surgery in total knee arthroplasty. Radiostereometric analysis (RSA) is an imaging technique to measure implant migration, with established migration thresholds for well-fixed, at risk, and unacceptably migrating components. The purpose of the present study was to examine the long-term fixation of a cemented titanium fixed bearing polished tibial baseplate. Patients enrolled in a previous two-year prospective trial were recalled at ten years. All patients received a cemented, posterior-stabilised total knee replacement of the same design implanted by one of three surgeons. Of the original 35 patients, 16 were available for long-term follow-up, with one patient lost to follow-up, nine patients deceased, and a further nine patients unwilling to return to the clinic. Each patient underwent RSA imaging in a supine position using a conventional RSA protocol. Migration of the tibial component in all planes as well as maximum total point motion (MTPM) was compared between all time points (baseline, six weeks, three months, six months, one year, two years) up to the ten year follow-up visits. Outcome scores including the Knee Society Score (KSS), WOMAC, SF-12, and UCLA Activity Score were recorded. At ten years, the mean migrations of the tibial component were less than 0.1 mm and 0.1 degree in all planes relative to the post-operative RSA exam. There was no significant difference in tibial component migration between time points. However, MTPM increased significantly over time (p = 0.002), from 0.23 ± 0.18 mm at six weeks to 0.42 ± 0.20 mm at ten years. At one year, 13 patients had an acceptable MTPM level, three patients had an ‘at risk’ level, and no patient had an ‘unacceptable’ level. No patients were revised at ten years. WOMAC and KSS were significantly improved (p < 0.0001) at the latest follow-up compared to pre-operatively, but there was no difference in SF-12. The median UCLA Activity Score at latest follow-up was six (range, two to eight). The tibial baseplate demonstrated solid fixation at ten years. No patients had an unacceptable MTPM level at one year and no patients were revised at ten years, supporting the use of RSA to predict long-term loosening risk. The low level of tibial baseplate migration found in the present study correlates to the low rate of revision for this implant as reported in individual studies and in joint replacement registries


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 64 - 64
1 Nov 2016
Teeter M Naudie D McCalden R Yuan X MacDonald S
Full Access

The philosophy of cemented total hip arthroplasty (THA) femoral components has become polarised. At one extreme are polished, collarless, tapered devices that are expected to subside; at the other extreme are roughened, non-tapered implants with a collar designed not to subside. Radiostereometric analysis (RSA) allows the accurate measurement of implant movement and has been extensively used for measurement of the in vivo migration of implants. The degree of migration as measured by RSA during the first years after surgery has been shown to correlate with the long-term performance of cemented femoral implants. The purpose of this study was to review the two-year RSA results of two different designs of primary cemented THA stems. Data from two previous prospective RSA trials with two-year follow-up were pooled. The first group included 36 patients who received a Spectron (Smith & Nephew, Memphis, USA) cemented stem. The second group included 13 patients who received an Exeter (Stryker, Mahwah, USA) cemented stem, and 15 patients who received a CPCS (Smith & Nephew, Memphis, USA) cemented stem. All patients underwent RSA examinations shortly post-operation, at 6 weeks, 3 months, 6 months, 1 years, and 2 years. Migration and rotation of the femoral stems was measured at each time point relative to the post-operative exam, and compared between the two groups. There was no difference in age at surgery (Spectron 78 ± 6 years, Exeter/CPCS 77 ± 5 years, p = 0.43), BMI (Spectron and Exeter/CPCS 28 ± 5 kg/m2, p = 0.92), or percentage of male patients (Spectron 23% male, Exeter/CPCS 21% male) between the implant groups. Subsidence was significantly greater (p < 0.0001) at all time points from three months to two years for the Exeter and CPCS stems (0.94 ± 0.39 mm at two years) compared to the Spectron stem (0.05 ± 0.16 mm at two years). There was no significant difference between the stem types for medial-lateral translation (p = 0.07) or anterior-posterior translation (p = 0.49), or for anterior-posterior tilt (p = 0.15), internal-external rotation (p = 0.89), or varus-valgus rotation (p = 0.05). Implant material, design, and surface finish are all factors in the long-term performance of cemented femoral hip implants. In this study, both femoral stem designs had a magnitude of sub-sidence that was within the limits of what is considered to be safe with respect to long-term performance. The continuous subsidence of the Exeter and CPCS stems is consistent with previous reports in the literature