Tendinopathy is a tendon pathology often resulting from a failed healing response to tendon injury. Activated protein C (APC) is a natural anti-coagulant with anti-inflammatory and wound healing promoting functions, which are mainly mediated by its receptors, endothelial protein C receptor (EPCR) and protease activated receptors (PARs). This study aimed to determine whether APC stimulates tenocyte healing and if so, to assess the involvement of the receptors. Mouse-tail tenocytes were isolated from 3-week-old wild type (WT), PAR- 1 knockout (KO) and PAR-2 KO mice. The expression of EPCR, PAR-1 and −2 and the effect of APC on tenocytes tendon healing and the underlying mechanisms were investigated by Reverse transcription
Tenomodulin (Tnmd) is the best known mature tendon factor for tendon and ligament tissues with reported important regulatory roles1. In addition, Tnmd C-terminal cysteine-rich domain has been descibed to exert anti-angiogenic functions in in vitro angiogenic assays as well as in vivo models of tendon injury and age-associated cardiac valve diseases1, 2. Interestingly, Tnmd expresson in the intervertebral disc (IVD), which is normally avascular tissue, has been also suggested3. Hence, the purpose of this study was first, to map the exact expression pattern of Tnmd during IVD development and aging and second, by implementing Tnmd-knockout mouse model, to examine if Tnmd plays a role in IVD homeostasis. Histological analyses (hematoxylin/eosin, Safranin O, CD31 for endothelium, TUNEL for apoptosis and type X collagen and Runx2 for hypetrophy) were performed on Tnmd −/−, Tnmd −/− and chondromodulin I Chmd 1 −/− (Tnmd only homolog) double knockout and wild type mice WT (n = three to five) to examine IVD degeneration.
Adult articular cartilage mechanical functionality is dependent on the unique zonal organization of its tissue. Current mesenchymal stem cell (MSC)-based treatment has resulted in sub-optimal cartilage repair, with inferior quality of cartilage generated from MSCs in terms of the biochemical content, zonal architecture and mechanical strength when compared to normal cartilage. The phenotype of cartilage derived from MSCs has been reported to be influenced by the microenvironmental biophysical cues, such as the surface topography and substrate stiffness. In this study, the effect of nano-topographic surfaces to direct MSC chondrogenic differentiation to chondrocytes of different phenotypes was investigated, and the application of these pre-differentiated cells for cartilage repair was explored. Specific nano-topographic patterns on the polymeric substrate were generated by nano-thermal imprinting on the PCL, PGA and PLA surfaces respectively. Human bone marrow MSCs seeded on these surfaces were subjected to chondrogenic differentiation and the phenotypic outcome of the differentiated cells was analyzed by
The inflammatory cascade associated with prosthetic implant wear debris, in addition to diseases such as rheumatoid arthritis and periodontitis, it is shown to drastically influence bone turnover in the local environment. Ultimately, this leads to enhanced osteoclastic resorption and the suppression of bone formation by osteoblasts causing implant failure, joint failure, and tooth loosening in the respective conditions if untreated. Regulation of this pathogenic bone metabolism can enhance bone integrity and the treatment bone loss. The current study used novel compounds that target a group of enzymes involved with the epigenetic regulation of gene expression and protein function, histone deacetylases (HDAC), to reduce the catabolism and improve the anabolism of bone material in vitro. Human osteoclasts were differentiated from peripheral blood monocytes and cultured over a 17 day period. In separate experiments, human osteoblasts were differentiated from human mesenchymal stem cells isolated from bone chips collected during bone marrow donations, and cultured over 21 days. In these assays, cells were exposed to the key inflammatory cytokine involved with the cascade of the abovementioned conditions, tumour necrosis factor-α (TNFα), to represent an inflammatory environment in vitro. Cells were then treated with HDAC inhibitors (HDACi) that target the individual isoforms previously shown to be altered in pathological bone loss conditions, HDAC-1, −2, −5 and −7. Analysis of bone turnover through dentine resorptive measurements and bone mineral deposition analyses were used to quantify the activity of bone cells. Immunohistochemistry of tartrate resistant acid phosphatase (TRAP), WST-assay and automated cell counting was used to assess cell formation, viability and proliferation rates. Real-time
The detailed biomechanical mechanism of annulus fibrosus under abnormal loading is still ambiguous, especially at the micro and nano scales. This study aims to characterize the alterations of modulus at the nano scale of individual collagen fibrils in annulus fibrosus after in-situ immobilization, and the corresponding micro-biomechanics of annulus fibrosus. An immobilization model was used on the rat tail with an external fixation device. Twenty one fully grown 12-week-old male Sprague-Dawley rats were used in this study. The rats were assigned to one of three groups randomly. One group was selected to be the baseline control group with intact intervertebral discs (n=7). In the other two groups, the vertebrae were immobilized with an external fixation device that fixed four caudal vertebrae (C7-C10) for 4 and 8 weeks, respectively. Four K-wires were fixed in parallel using two aluminum alloy cuboids which do not compress or stretch the target discs. The immobilized discs were harvested and then stained with hematoxylin/eosin, scanned using atomic force microscopy to obtain the modulus at both nano and micro scales, and analyzed the gene expression with real-time
This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms. We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.Aims
Methods
Recent evidence suggests that the microbial community, its spatial distribution and activity play an important role in the prolongation of treatment and healing of chronic infections. Standard bacterial cultures often underestimate the microbial diversity present in chronic infections. This lack of growth is often due to a combination of inadequate growth conditions, prior usage of antibiotics and presence of slow-growing, fastidious, anaerobic or unculturable bacteria living in biofilms. Thus, diagnosis of chronic infections is challenged by lack of appropriate sampling strategies and by limitations in microbiological testing methods. The purpose of this study was to improve sampling and diagnosis of prosthetic joint infections (PJI) and chronic wounds, especially considering the biofilm issue. Systematic sampling, sonication of prosthesis and extended culture were applied on patients with chronic wounds and patients with suspected PJIs. Optimized DNA extraction,
Purpose. Vitamin D is a key regulator of bone homeostasis. The enzyme CYP24A1 is responsible for transforming vitamin D into 24,25(OH)2vitD. The putative biological activity of 24,25(OH)2vitD remains unclear. Previous studies showed an increase in the circulating levels of this metabolite following a fracture in chicks. Our laboratory has engineered a mouse model deficient for the Cyp24a1 gene for studying the role of 24,25(OH)2vitD. We set out to study the role of 24,25(OH)2vitD in endochondral and intramembranous bone formation in fracture repair in this mouse model based on the results of the chick fracture repair study. Method. Wild-type and mutant Cyp24a1 gene deficient mice were subjected to two different surgical procedures to simulate bone development and fracture repair. To mimic endochondral ossification, we devised a modified technique to perform intramedullary nailing of a mouse tibia followed by an induced fracture. To evaluate intramembranous ossification, we applied distraction osteogenesis to a mouse tibia using a mini Ilizarov external fixator apparatus. Histomorphometric parameters and gene expression differences in fracture repair between the mutant mice and the wild-type controls were measured using micro computed tomography, histology and reverse-transcription
An ultra-high molecular weight polyethylene (UHMWPE) is widely used as bearing material in artificial joints, however, UHMWPE wear particles are considered to be a major factor in long-term osteolysis and loosening of implants. The wear particles activate macrophages, which release cytokines, stimulating osteoclasts, which results in bone resorption. The biological activity of the wear debris is dependent on the volume and size of the particles produced. Many researchers reported that the volume and size of particles were critical factors in macrophage activation, which particles in the size range of 0.1–1 mm being the most biological active. To minimize the amount of wear of UHMWPE and to enlarge the size of UHMWPE wear particle, a nano-level surface textured on Co-Cr-Mo alloy as a counterface material was invented (Figure 1). Although the generally-used surface for a conventional artificial joint has 10 nm roughness (G-1), the nano-level surface has a superfine surface of 1 nm with groove and dimples against the bearing area. The existence probability of groove or dimples, and their surface waviness were adjusted (P-1, 2, 3, 4 and W-1, 2). Pin-on-disc wear tester capable of multidirectional motions was used to verify that the nano-textured surface is the most appropriate for artificial joint. UHMWPE pin with an average molecular weight of 6.0 million was placed in contact with the disc and the contact pressure was 6.0 MPa. The disc and pin were lubricated by a water-based liquid containing the principal constituents of natural synovial fluid. Sliding speed of 12.12 mm/s had been applied for total sliding distance of 15 km. The nano-textured surfaces reduced the amount of UHMWPE wear, this would ensure the long-term durability of artificial joint (Figure 2). The wear particles isolated from lubricating liquid were divided broadly into two categories; one is “simple type” and the other is “complicated type”. The lengths in a longitudinal direction (Ll) and its orthogonal direction (Ls) for each particles (>150) were measured, and the each aspect ratio (= Ll/Ls) was calculated. No significant difference was found in the ratio between simple type and complicated type, and in the distributions of aspect ratios. However, the distributions of Ll, which means the size of UHMWPE wear particle, were dramatically changed by using the nano-textured surface (Figure 3). These results suggest that the nano-textured surface does not change the morphological aspect of UHMWPE particle but enlarges the size of UHMWPE particle. Cells (RAW264.7, blood, Mouse) were cultured with the particles in supplemented Dulbecco's modified Eagle's medium for 24 h in an atmosphere of 5% CO. 2. in air at 37 degrees C, and the
Bone morphogenetic proteins (BMPs) are able to induce osteogenic differentiation in many cells, including muscle cells. However, the actual contribution of muscle cells to bone formation and repair is unclear. Our objective was to examine the capacity of myogenic cells to contribute to BMP-induced ectopic bone formation and fracture repair. Osteogenic gene expression was measured by
Purpose. The data regarding the effects of noggin on bone morphogenetic protein (BMP)-induced osteogenesis of mesenchymal stem cells (MSCs) are controversial. Most studies performed in rodent cells/models indicated that noggin was a negative regulator of BMP-2-induced osteogenesis; however, one study conducted with human MSCs in culture showed that the addition of noggin induced osteogenesis in vitro. To clear the controversy, we designed this study to evaluate the effects of knocking down noggin gene expression on BMP-2-induced osteogenesis of human bone marrow-derived primary MSCs in vitro. Method. MSCs were isolated from human tibial bone marrow by density gradient centrifugation. Two noggin small interfering RNAs (siRNAs) were used in this study to knockdown noggin gene expression. There were four study groups: MSCs with no transfection of siRNA (named as NT group), MSCs transfected with non-targeting negative control siRNA (named as control group), MSCs transfected with noggin siRNA1 (named as NOGsi1 group), and MSCs transfected with noggin siRNA2 (named as NOGsi2 group). After transfection, MSCs were induced to undergo osteogenic differentiation by incubating in basal medium containing 0.1 μg/ml BMP-2 for 35 days. The expression levels of osteoblastic marker genes were measured by real-time
An ultra-high molecular weight polyethylene (UHMWPE) is widely used as bearing material in artificial joints, however, UHMWPE wear particles are considered to be a major factor in long-term osteolysis and loosening of implants. The wear particles activate macrophages, which release cytokines, stimulating osteoclasts, which results in bone resorption. The biological activity of the wear debris is dependent on the volume and size of the particles produced. Many researchers reported that the volume and size of particles were critical factors in macrophage activation, which particles in the size range of 0.1–1 mm being the most biological active. To minimize the amount of wear of UHMWPE and to enlarge the size of UHMWPE wear particle, a nano-level surface texturing on Co-Cr-Mo alloy as a counterface material was invented. Although the generally-used surface for a conventional artificial joint has 10 nm roughness (Surface A), the nano-level textured surface invented has a superfine surface of 1 nm with 3% of groove and dimples against the bearing area. The depths of groove and dimples are less than 50 nm (Surface F). Pin-on-disc wear tester capable of multidirectional motions was used to verify that the nano-textured surface is the most appropriate for artificial joint. UHMWPE pin with an average molecular weight of 6.0 million was placed in contact with the disc and the contact pressure was 6.0 MPa. The disc and pin were lubricated by a water-based liquid containing the principal constituents of natural synovial fluid. Sliding speed of 12.12 mm/s had been applied for total sliding distance of 15 km. The superfine surface with nano-level grooves and dimples (Surface F) reduced the amount of UHMWPE wear, this would ensure the long-term durability of artificial joint. The wear particles isolated from lubricating liquid were divided broadly into two categories; one is “simple type” and the other is “complicated type”. The lengths in a longitudinal direction (Ll) and its orthogonal direction (Ls) for each particles (>150) were measured, and the each aspect ratio (= Ll/Ls) was calculated. No significant difference was found in the ratio between simple type and complicated type, and in the distributions of aspect ratios. However, the distributions of Ll, which means the size of UHMWPE wear particle, were dramatically changed by using the nano-textured surface (Figure 2). These results suggest that the nano-textured surface does not change the morphological aspect of UHMWPE particle but enlarges the size of UHMWPE particle. Cells (RAW264.7, blood, Mouse) were cultured with the particles in supplemented Dulbecco's modified Eagle's medium for 24 h in an atmosphere of 5% CO. 2. in air at 37 degrees C, and the
Numerous investigators have described osteogenic differentiation of bone marrow stromal cells obtained from both murine and human sources over the past decade. The ease of access and large available quantity of adipose tissue, however, makes Adipose-Derived Stem Cells (ADSC) a far more practical alternative for clinical applications, such as operative treatment of non-unions and regeneration of critical bone defects. Therefore, the primary goal of this research endeavor is to achieve osteogenic differentiation of ADSC. Previous work has already demonstrated that bone morphogenetic protein receptor 1A (BMP receptor 1A) signaling is required for healing critical bone defects. Based on this evidence, we used a lentiviral vector to increase expression of BMP receptor 1A by our stem cell population in order to direct their differentiation into the osteoblastic lineage. We harvested subcutaneous adipose tissue intraoperatively from consenting patients undergoing elective lipoplasty and panniculectomy procedures. The stromal vascular fraction was isolated from this tissue and further refined by passaging in selective media to yield a stable population of ADSC in primary culture. Both the identity and homogeneity of this stem cell population was confirmed using adipogenic induction media and differentiation cocktails. In addition, we subcloned an expression plasmid containing the BMP receptor 1A locus in tandem with green fluorescent protein (GFP) under the transcriptional control of a single promoter. This plasmid was packaged into a lentiviral vector to provide a reliable method of achieving both genomic integration and long-term expression of the BMP receptor 1A gene. Hence, transduction of ADSC using this vector resulted in overexpression of BMP receptor 1A by these multipotent cells. The GFP was then utilized as a reporter gene to screen and enrich the ADSC population for only those stem cells with a robust expression of BMP receptor 1A. The ADSC that overexpressed BMP receptor 1A were found to achieve osteogenic differentiation after 18 to 20 days of in vitro culture, as revealed by immunohistochemistry assays for osteocalcin. Osteogenic differentiation was further confirmed by alizarin red staining and
Now that we are in the deceleration phase of the COVID-19 pandemic, the focus has shifted to how to safely reinstate elective operating. Regional and speciality specific data is important to guide this decision-making process. This study aimed to review 30-day mortality for all patients undergoing orthopaedic surgery during the peak of the pandemic within our region. This multicentre study reviewed data on all patients undergoing trauma and orthopaedic surgery in a region from 18 March 2020 to 27 April 2020. Information was collated from regional databases. Patients were COVID-19-positive if they had positive laboratory testing and/or imaging consistent with the infection. 30-day mortality was assessed for all patients. Secondly, 30-day mortality in fracture neck of femur patients was compared to the same time period in 2019.Aims
Methods
Periprosthetic joint infection (PJI) complicates
between 0.5% and 1.2% primary total hip arthroplasties (THAs) and
may have devastating consequences. The traditional assessment of
patients suffering from PJI has involved the serological study of
inflammatory markers and microbiological analysis of samples obtained
from the joint space. Treatment has involved debridement and revision
arthroplasty performed in either one or two stages. We present an update on the burden of PJI, strategies for its
diagnosis and treatment, the challenge of resistant organisms and
the need for definitive evidence to guide the treatment of PJI after
THA. Cite this article: