Advertisement for orthosearch.org.uk
Results 1 - 15 of 15
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 41 - 41
10 Feb 2023
Fryer C Jackson C Mckelvey K Lin H Xue. M
Full Access

Tendinopathy is a tendon pathology often resulting from a failed healing response to tendon injury. Activated protein C (APC) is a natural anti-coagulant with anti-inflammatory and wound healing promoting functions, which are mainly mediated by its receptors, endothelial protein C receptor (EPCR) and protease activated receptors (PARs). This study aimed to determine whether APC stimulates tenocyte healing and if so, to assess the involvement of the receptors. Mouse-tail tenocytes were isolated from 3-week-old wild type (WT), PAR- 1 knockout (KO) and PAR-2 KO mice. The expression of EPCR, PAR-1 and −2 and the effect of APC on tenocytes tendon healing and the underlying mechanisms were investigated by Reverse transcription real time PCR, western blot, 3- (4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay, zymography, and scratch wound healing/ migration assay. When compared to WT cells, PAR-1 KO tenocytes showed increased cell proliferation (3.3-fold, p<0.0001), migration (2.7-fold, p<0.0001) and wound healing (3-fold, p<0.0001), whereas PAR-2 KO cells displayed decreased cell proliferation (0.6-fold, p<0.05) and no change in cell migration or wound healing. APC at 1 μg/ml stimulated WT and PAR-1 KO tenocyte proliferation (~1.3, respectively, p<0.05) and wound healing (~1.3-fold, respectively, p<0.05), and additionally promoted PAR1-KO cell migration (1.4-fold, p<0.0001). APC only increased the migration (2-fold, p<0.05) of PAR-2 KO tenocytes. The activation of AKT, extracellular signal-regulated kinase (ERK)-2, and glycogen synthase kinase (GSK)-β3, the intracellular molecules that are associated with cell survival/growth, and matrix metalloproteinase (MMP)-2 that is related to cell migration and wound healing, were increased in all three cell lines in response to APC treatment. These findings show that PAR-1 and PAR-2 act differentially in tenocyte proliferation/migration/wound healing. APC likely promotes tenocyte proliferation/ wound healing via PAR-2, not PAR-1


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 16 - 16
1 Jul 2020
Docheva D Lin D
Full Access

Tenomodulin (Tnmd) is the best known mature tendon factor for tendon and ligament tissues with reported important regulatory roles1. In addition, Tnmd C-terminal cysteine-rich domain has been descibed to exert anti-angiogenic functions in in vitro angiogenic assays as well as in vivo models of tendon injury and age-associated cardiac valve diseases1, 2. Interestingly, Tnmd expresson in the intervertebral disc (IVD), which is normally avascular tissue, has been also suggested3. Hence, the purpose of this study was first, to map the exact expression pattern of Tnmd during IVD development and aging and second, by implementing Tnmd-knockout mouse model, to examine if Tnmd plays a role in IVD homeostasis. Histological analyses (hematoxylin/eosin, Safranin O, CD31 for endothelium, TUNEL for apoptosis and type X collagen and Runx2 for hypetrophy) were performed on Tnmd −/−, Tnmd −/− and chondromodulin I Chmd 1 −/− (Tnmd only homolog) double knockout and wild type mice WT (n = three to five) to examine IVD degeneration. Real time PCR was implemented to explore gene expression chnages in annulus fibrous (AF) between Tnmd −/− and WT mice. In addition, outer AF (OAF) cells were isolated from both genotypes to further determine cellular phenotype and assess effects on co-culture with human umbical vein endothelial cells (HUVECs). Statistical differences between two groups were determined with t-test. In multiple comparisons, one-way ANOVA was followed by Bonferroni post-hoc correction. Tnmd was expressed in a temporal manner in OAF and to very low extent in NP. Tnmd −/− mice exhibited more rapid progression of age-related IVD degeneration. These signs included smaller collagen fibril diameter, reduced multiple IVD- and tendon/ligament-related gene expression, induced angiogenesis and inflamatory cell infiltration in OAF as well as more hypertrophic-like chondrocytes in the NP. In addition, Tnmd−/− Chm1 −/− mice displayes not only accelerated IVD phenotpye, but also ectopic bone formation in the IVD. Lastly, the abscence of Tnmd in OAF-derived cells significantly promoted HUVECs migratory capacity. These findings provide clear evidence that Tnmd plays a critical role in IVD homeostasis


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 33 - 33
1 Jul 2020
Wu Y Denslin V Ren X Lee CS Yap FL Yang Z Lee E Tee C
Full Access

Adult articular cartilage mechanical functionality is dependent on the unique zonal organization of its tissue. Current mesenchymal stem cell (MSC)-based treatment has resulted in sub-optimal cartilage repair, with inferior quality of cartilage generated from MSCs in terms of the biochemical content, zonal architecture and mechanical strength when compared to normal cartilage. The phenotype of cartilage derived from MSCs has been reported to be influenced by the microenvironmental biophysical cues, such as the surface topography and substrate stiffness. In this study, the effect of nano-topographic surfaces to direct MSC chondrogenic differentiation to chondrocytes of different phenotypes was investigated, and the application of these pre-differentiated cells for cartilage repair was explored. Specific nano-topographic patterns on the polymeric substrate were generated by nano-thermal imprinting on the PCL, PGA and PLA surfaces respectively. Human bone marrow MSCs seeded on these surfaces were subjected to chondrogenic differentiation and the phenotypic outcome of the differentiated cells was analyzed by real time PCR, matrix quantification and immunohistological staining. The influence of substrate stiffness of the nano-topographic patterns on MSC chondrogenesis was further evaluated. The ability of these pre-differentiated MSCs on different nano-topographic surfaces to form zonal cartilage was verified in in vitro 3D hydrogel culture. These pre-differentiated cells were then implanted as bilayered hydrogel constructs composed of superficial zone-like chondro-progenitors overlaying the middle/deep zone-like chondro-progenitors, was compared to undifferentiated MSCs and non-specifically pre-differentiated MSCs in a osteochondral defect rabbit model. Nano-topographical patterns triggered MSC morphology and cytoskeletal structure changes, and cellular aggregation resulting in specific chondrogenic differentiation outcomes. MSC chondrogenesis on nano-pillar topography facilitated robust hyaline-like cartilage formation, while MSCs on nano-grill topography were induced to form fibro/superficial zone cartilage-like tissue. These phenotypic outcomes were further diversified and controlled by manipulation of the material stiffness. Hyaline cartilage with middle/deep zone cartilage characteristics was derived on softer nano-pillar surfaces, and superficial zone-like cartilage resulted on softer nano-grill surfaces. MSCs on stiffer nano-pillar and stiffer nano-grill resulted in mixed fibro/hyaline/hypertrophic cartilage and non-cartilage tissue, respectively. Further, the nano-topography pre-differentiated cells possessed phenotypic memory, forming phenotypically distinct cartilage in subsequent 3D hydrogel culture. Lastly, implantation of the bilayered hydrogel construct of superficial zone-like chondro-progenitors and middle/deep zone-like chondro-progenitors resulted in regeneration of phenotypically better cartilage tissue with higher mechanical function. Our results demonstrate the potential of nano-topographic cues, coupled with substrate stiffness, in guiding the differentiation of MSCs to chondrocytes of a specific phenotype. Implantation of these chondrocytes in a bilayered hydrogel construct yielded cartilage with more normal architecture and mechanical function. Our approach provides a potential translatable strategy for improved articular cartilage regeneration using MSCs


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 75 - 75
1 Jul 2020
Algate K Cantley M Fitzsimmons T Paton S Wagner F Zannettino A Holson E Fairlie D Haynes D
Full Access

The inflammatory cascade associated with prosthetic implant wear debris, in addition to diseases such as rheumatoid arthritis and periodontitis, it is shown to drastically influence bone turnover in the local environment. Ultimately, this leads to enhanced osteoclastic resorption and the suppression of bone formation by osteoblasts causing implant failure, joint failure, and tooth loosening in the respective conditions if untreated. Regulation of this pathogenic bone metabolism can enhance bone integrity and the treatment bone loss. The current study used novel compounds that target a group of enzymes involved with the epigenetic regulation of gene expression and protein function, histone deacetylases (HDAC), to reduce the catabolism and improve the anabolism of bone material in vitro. Human osteoclasts were differentiated from peripheral blood monocytes and cultured over a 17 day period. In separate experiments, human osteoblasts were differentiated from human mesenchymal stem cells isolated from bone chips collected during bone marrow donations, and cultured over 21 days. In these assays, cells were exposed to the key inflammatory cytokine involved with the cascade of the abovementioned conditions, tumour necrosis factor-α (TNFα), to represent an inflammatory environment in vitro. Cells were then treated with HDAC inhibitors (HDACi) that target the individual isoforms previously shown to be altered in pathological bone loss conditions, HDAC-1, −2, −5 and −7. Analysis of bone turnover through dentine resorptive measurements and bone mineral deposition analyses were used to quantify the activity of bone cells. Immunohistochemistry of tartrate resistant acid phosphatase (TRAP), WST-assay and automated cell counting was used to assess cell formation, viability and proliferation rates. Real-time quantitative PCR was conducted to identify alterations in the expression of anti- and pro-inflammatory chemokines and cytokines, osteoclastic and osteoblastic factors, in addition to multiplex assays for the quantification of cytokine/chemokine release in cell supernatant in response to HDACi treatments in the presence or absence of TNFα. TNFα stimulated robust production of pro-inflammatory cytokines and chemokines by PBMCs (IL-1β, TNFα, MCP1 and MIP-1α) both at the mRNA and protein level (p < 0 .05). HDACi that target the isoforms HDAC-1 and −2 in combination significantly suppressed the expression or production of these inflammatory factors with greater efficacy than targeting these HDAC isoforms individually. Suppression of HDAC-5 and −7 had no effect on the inflammatory cascade induced by TNFα in monocytes. During osteoclastic differentiation, TNFα stimulated the size and number of active cells, increasing the bone destruction observed on dentine slices (p < 0 .05). Targeting HDAC-1 and −2 significantly reduced bone resorption through modulation of the expression of RANKL signalling factors (NFATc1, TRAF6, CatK, TRAP, and CTR) and fusion factors (DC-STAMP and β3-integerin). Conversely, the anabolic activity of osteoblasts was preserved with HDACi targeting HDAC-5 and −7, significantly increasing their mineralising capacity in the presence of TNFαthrough enhanced RUNX2, OCN and Coll-1a expression. These results identify the therapeutic potential of HDACi through epigenetic regulation of cell activity, critical to the processes of inflammatory bone destruction


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 23 - 23
1 Jul 2020
Liang T Luo Z
Full Access

The detailed biomechanical mechanism of annulus fibrosus under abnormal loading is still ambiguous, especially at the micro and nano scales. This study aims to characterize the alterations of modulus at the nano scale of individual collagen fibrils in annulus fibrosus after in-situ immobilization, and the corresponding micro-biomechanics of annulus fibrosus. An immobilization model was used on the rat tail with an external fixation device. Twenty one fully grown 12-week-old male Sprague-Dawley rats were used in this study. The rats were assigned to one of three groups randomly. One group was selected to be the baseline control group with intact intervertebral discs (n=7). In the other two groups, the vertebrae were immobilized with an external fixation device that fixed four caudal vertebrae (C7-C10) for 4 and 8 weeks, respectively. Four K-wires were fixed in parallel using two aluminum alloy cuboids which do not compress or stretch the target discs. The immobilized discs were harvested and then stained with hematoxylin/eosin, scanned using atomic force microscopy to obtain the modulus at both nano and micro scales, and analyzed the gene expression with real-time quantitative polymerase chain reaction. Significance of differences between the study groups was obtained using a two-way analysis of variance (ANOVA) with Fisher's Partial Least-Squares Difference (PLSD) to analyze the combined influence of immobilization time and scanning region. Statistical significance was set at P≤0.05. Compared to the control group, the inner layer of annulus fibrosus presented significant disorder and hyperplasia after immobilization for 8 weeks, but not in the 4 week group. The fibrils in inner layer showed an alteration in elastic modulus from 91.38±20.19MPa in the intact annulus fibrosus to 110.64±15.58MPa (P<0.001) at the nano scale after immobilization for 8 weeks, while the corresponding modulus at the micro scale also underwent a change from 0.33±0.04MPa to 0.47±0.04MPa (P<0.001). The upregulation of collagen II from 1±0.03 in control to 1.22±0.03 in 8w group (P = 0.003) was induced after immobilization, while other genes expression showed no significant alteration after immobilization for both 4 and 8 weeks compared to the control group (P>0.05). The biomechanical properties at both nano and micro scales altered in different degrees between inner and outer layers in annulus fibrosus after immobilization for different times. Meanwhile, the fibril arrangement disorder and the upregulation of collagen II in annulus fibrosus were observed using hematoxylin/eosin staining and real-time RT-PCR, respectively. These results indicate that immobilization not only influenced the individual collagen fibril at the nano scale, but also suggested alterations of micro-biomechanics and cell response. This work provides a better understanding of IVD degeneration after immobilization and benefits to the clinical treatment related to disc immobilization


Bone & Joint Research
Vol. 13, Issue 8 | Pages 411 - 426
28 Aug 2024
Liu D Wang K Wang J Cao F Tao L

Aims

This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms.

Methods

We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 84 - 84
1 Dec 2015
Thomsen T Xu Y Larsen L Lorenzen J
Full Access

Recent evidence suggests that the microbial community, its spatial distribution and activity play an important role in the prolongation of treatment and healing of chronic infections. Standard bacterial cultures often underestimate the microbial diversity present in chronic infections. This lack of growth is often due to a combination of inadequate growth conditions, prior usage of antibiotics and presence of slow-growing, fastidious, anaerobic or unculturable bacteria living in biofilms. Thus, diagnosis of chronic infections is challenged by lack of appropriate sampling strategies and by limitations in microbiological testing methods. The purpose of this study was to improve sampling and diagnosis of prosthetic joint infections (PJI) and chronic wounds, especially considering the biofilm issue. Systematic sampling, sonication of prosthesis and extended culture were applied on patients with chronic wounds and patients with suspected PJIs. Optimized DNA extraction, quantitative PCR, cloning, next generation sequencing and PNA FISH were applied on the different types of specimens for optimized diagnosis. For further investigation of the microbial pathogenesis, in situ transcriptomics and metabolomics were applied. In both chronic wounds and PJIs, molecular techniques detected a larger diversity of microorganisms than culture methods in several patients. Especially in wounds, molecular methods identified more anaerobic pathogens than culture methods. A heterogeneous distribution of bacteria in various specimens from the same patient was evident for both patient groups. In chronic wounds, multiple biopsies from the same ulcer showed large differences in the abundance of S. aureus and P. aeruginosa at different locations. Transcriptomic and metabolomic analyses indicated the important virulence genes and nutrient acquisition mechanisms of Staphylococcus aureus in situ. As an example, diagnosis and treatment of a patient with a chronic biofilm prosthesis infection persisting for 7 years will be presented. Our studies show that diagnosis of chronic biofilm related infections required multiple specimen types, standardized sampling, extended culture and molecular analysis. Our results are useful for improvement of sampling, analysis and treatment in the clinic. It is our ambition to translate studies on bacterial activity into clinical practice in the future


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 10 - 10
1 Sep 2012
Husseini A St-Arnaud R
Full Access

Purpose. Vitamin D is a key regulator of bone homeostasis. The enzyme CYP24A1 is responsible for transforming vitamin D into 24,25(OH)2vitD. The putative biological activity of 24,25(OH)2vitD remains unclear. Previous studies showed an increase in the circulating levels of this metabolite following a fracture in chicks. Our laboratory has engineered a mouse model deficient for the Cyp24a1 gene for studying the role of 24,25(OH)2vitD. We set out to study the role of 24,25(OH)2vitD in endochondral and intramembranous bone formation in fracture repair in this mouse model based on the results of the chick fracture repair study. Method. Wild-type and mutant Cyp24a1 gene deficient mice were subjected to two different surgical procedures to simulate bone development and fracture repair. To mimic endochondral ossification, we devised a modified technique to perform intramedullary nailing of a mouse tibia followed by an induced fracture. To evaluate intramembranous ossification, we applied distraction osteogenesis to a mouse tibia using a mini Ilizarov external fixator apparatus. Histomorphometric parameters and gene expression differences in fracture repair between the mutant mice and the wild-type controls were measured using micro computed tomography, histology and reverse-transcription quantitative PCR (RT-qPCR) respectively. Results. Quantitative histomorphometric results showed a delay in endochondral fracture repair in the mutant mice calluses as compared to the wild-type mice calluses. In the same model, gene expression of type X collagen in the callus was higher in the wild-type mice. These significant differences were fully rescued by injecting the mutant mice with exogenous 24,25(OH)2vitD. In the intramembranous bone formation model, we found a trend towards reduced bone formation in the gap created by the distraction process in the mutant mice as compared to the wild-type mice. However, the differences did not reach statistical significance. Conclusion. Our results support a role for 24,25(OH)2vitD in fracture repair which is more dominant in a chondrocyte-mediated bone formation pathway like endochondral ossification. Although our results did not reach statistical significance in the intramembranous ossification model, the observed trend suggests a potential role as well. Further study of the role of 24,25(OH)2vitD in bone healing has the potential to support novel approaches in accelerating bone formation and fracture repair


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 447 - 447
1 Dec 2013
Nakanishi Y Hidehiko H Miura H Shiraishi Y Shimoto T Umeno T Mizuta H Iwamoto Y
Full Access

An ultra-high molecular weight polyethylene (UHMWPE) is widely used as bearing material in artificial joints, however, UHMWPE wear particles are considered to be a major factor in long-term osteolysis and loosening of implants. The wear particles activate macrophages, which release cytokines, stimulating osteoclasts, which results in bone resorption. The biological activity of the wear debris is dependent on the volume and size of the particles produced. Many researchers reported that the volume and size of particles were critical factors in macrophage activation, which particles in the size range of 0.1–1 mm being the most biological active. To minimize the amount of wear of UHMWPE and to enlarge the size of UHMWPE wear particle, a nano-level surface textured on Co-Cr-Mo alloy as a counterface material was invented (Figure 1). Although the generally-used surface for a conventional artificial joint has 10 nm roughness (G-1), the nano-level surface has a superfine surface of 1 nm with groove and dimples against the bearing area. The existence probability of groove or dimples, and their surface waviness were adjusted (P-1, 2, 3, 4 and W-1, 2). Pin-on-disc wear tester capable of multidirectional motions was used to verify that the nano-textured surface is the most appropriate for artificial joint. UHMWPE pin with an average molecular weight of 6.0 million was placed in contact with the disc and the contact pressure was 6.0 MPa. The disc and pin were lubricated by a water-based liquid containing the principal constituents of natural synovial fluid. Sliding speed of 12.12 mm/s had been applied for total sliding distance of 15 km. The nano-textured surfaces reduced the amount of UHMWPE wear, this would ensure the long-term durability of artificial joint (Figure 2). The wear particles isolated from lubricating liquid were divided broadly into two categories; one is “simple type” and the other is “complicated type”. The lengths in a longitudinal direction (Ll) and its orthogonal direction (Ls) for each particles (>150) were measured, and the each aspect ratio (= Ll/Ls) was calculated. No significant difference was found in the ratio between simple type and complicated type, and in the distributions of aspect ratios. However, the distributions of Ll, which means the size of UHMWPE wear particle, were dramatically changed by using the nano-textured surface (Figure 3). These results suggest that the nano-textured surface does not change the morphological aspect of UHMWPE particle but enlarges the size of UHMWPE particle. Cells (RAW264.7, blood, Mouse) were cultured with the particles in supplemented Dulbecco's modified Eagle's medium for 24 h in an atmosphere of 5% CO. 2. in air at 37 degrees C, and the quantitative PCR was performed for genetic expression of IL-6. The wear debris generated on the nano-textured surface inhibited the genetic expression of IL-6, which does not induce the tissue reaction and joint loosening


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 131 - 131
1 May 2012
Liu R Peacock L Mikulec K Morse A Schindeler A Little D
Full Access

Bone morphogenetic proteins (BMPs) are able to induce osteogenic differentiation in many cells, including muscle cells. However, the actual contribution of muscle cells to bone formation and repair is unclear. Our objective was to examine the capacity of myogenic cells to contribute to BMP-induced ectopic bone formation and fracture repair. Osteogenic gene expression was measured by quantitative PCR in osteoprogenitors, myoblasts, and fibroblasts following BMP-2 treatment. The MyoD-Cre x ROSA26R and MyoD-Cre x Z/AP mouse strains were used to track the fate of MyoD+ cells in vivo. In these double-transgenic mice, MyoD+ progenitors undergo a permanent recombination event to induce reporter gene expression. Ectopic bone was produced by the intramuscular implantation of BMP-7. Closed tibial fractures and open tibial fractures with periosteal stripping were also performed. Cellular contribution was tracked at one, two and three week time points by histological staining. Osteoprogenitors and myoblasts exhibited comparable expression of early and late bone markers; in contrast bone marker expression was considerably less in fibroblasts. The sensitivity of cells to BMP-2 correlated with the expression of BMP receptor-1a (Bmpr1a). Pilot experiments using the MyoD-Cre x Rosa26R mice identified a contribution by MyoD expressing cells in BMP-induced ectopic bone formation. However, false positive LacZ staining in osteoclasts led us to seek alternative systems such as the MyoD-cre x Z/AP mice that have negligible background staining. Initially, a minor contribution from MyoD expressing cells was noted in the ectopic bones in the MyoD-cre x Z/AP mice, but without false positive osteoclast staining. Soft tissue trauma usually precedes the formation of ectopic bone. Hence, to mimic the clinical condition more precisely, physical injury to the muscle was performed. Traumatising the muscle two days prior to BMP-7 implantation: (1) induced MyoD expression in quiescent satellite cells; (2) increased ectopic bone formation; and (3) greatly enhanced the number of MyoD positive cells in the ectopic bone. In open tibial fractures the majority of the initial callus was MyoD+ indicating a significant contribution by myogenic cells. In contrast, closed fractures with the periosteum intact had a negligible myogenic contribution. Myoblasts but not fibroblasts were highly responsive to BMP stimulation and this was associated with BMP receptor expression. Our transgenic mouse models demonstrate for the first time that muscle progenitors can significantly contribute to ectopic bone formation and fracture repair. This may have translational applications for clinical orthopaedic therapies


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 4 - 4
1 Sep 2012
Chen C Uludag H Wang Z Jiang H
Full Access

Purpose. The data regarding the effects of noggin on bone morphogenetic protein (BMP)-induced osteogenesis of mesenchymal stem cells (MSCs) are controversial. Most studies performed in rodent cells/models indicated that noggin was a negative regulator of BMP-2-induced osteogenesis; however, one study conducted with human MSCs in culture showed that the addition of noggin induced osteogenesis in vitro. To clear the controversy, we designed this study to evaluate the effects of knocking down noggin gene expression on BMP-2-induced osteogenesis of human bone marrow-derived primary MSCs in vitro. Method. MSCs were isolated from human tibial bone marrow by density gradient centrifugation. Two noggin small interfering RNAs (siRNAs) were used in this study to knockdown noggin gene expression. There were four study groups: MSCs with no transfection of siRNA (named as NT group), MSCs transfected with non-targeting negative control siRNA (named as control group), MSCs transfected with noggin siRNA1 (named as NOGsi1 group), and MSCs transfected with noggin siRNA2 (named as NOGsi2 group). After transfection, MSCs were induced to undergo osteogenic differentiation by incubating in basal medium containing 0.1 μg/ml BMP-2 for 35 days. The expression levels of osteoblastic marker genes were measured by real-time quantitative PCR on day 14. Also assessed was alkaline phosphatase (ALP) activity by a colorimetric kinetic assay and Fast Blue B staining on day 14. Calcium deposition was determined by the calcium assay on day 35. Results. The expression levels of integrin binding sialoprotein (IBSP) and osteocalcin (OC) were significantly decreased in both NOGsi1 and NOGsi2 groups compared with NT and control groups (all p<0.038). Although the expression level of runt-related transcription factor 2 (RUNX2) was also reduced in NOGsi1 and NOGsi2 groups compared with NT and control groups, it did not reach statistical significance. ALP activity was significantly lower in NOGsi1 and NOGsi2 groups than that of NT group (both p<0.024). The same pattern was also observed in ALP Fast Blue B staining. Calcium deposition was also significantly decreased in both NOGsi1 and NOGsi2 groups compared with NT group (both p<=0.048). Conclusion. Noggin suppression by siRNA inhibits BMP-2-induced osteogenesis of human bone marrow-derived MSCs. Our results, contrary to the extensive studies conducted in rodent cells/models, corroborated with the previous study that the addition of noggin in the cell culture increased osteogenesis of human MSCs. This suggests that the effects of noggin on BMP-2-induced osteogenesis of MSCs might be species-specific


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 278 - 278
1 Mar 2013
Nakanishi Y Miura H Tokunaga K Hidehiko H Mizuta H Iwamoto Y
Full Access

An ultra-high molecular weight polyethylene (UHMWPE) is widely used as bearing material in artificial joints, however, UHMWPE wear particles are considered to be a major factor in long-term osteolysis and loosening of implants. The wear particles activate macrophages, which release cytokines, stimulating osteoclasts, which results in bone resorption. The biological activity of the wear debris is dependent on the volume and size of the particles produced. Many researchers reported that the volume and size of particles were critical factors in macrophage activation, which particles in the size range of 0.1–1 mm being the most biological active. To minimize the amount of wear of UHMWPE and to enlarge the size of UHMWPE wear particle, a nano-level surface texturing on Co-Cr-Mo alloy as a counterface material was invented. Although the generally-used surface for a conventional artificial joint has 10 nm roughness (Surface A), the nano-level textured surface invented has a superfine surface of 1 nm with 3% of groove and dimples against the bearing area. The depths of groove and dimples are less than 50 nm (Surface F). Pin-on-disc wear tester capable of multidirectional motions was used to verify that the nano-textured surface is the most appropriate for artificial joint. UHMWPE pin with an average molecular weight of 6.0 million was placed in contact with the disc and the contact pressure was 6.0 MPa. The disc and pin were lubricated by a water-based liquid containing the principal constituents of natural synovial fluid. Sliding speed of 12.12 mm/s had been applied for total sliding distance of 15 km. The superfine surface with nano-level grooves and dimples (Surface F) reduced the amount of UHMWPE wear, this would ensure the long-term durability of artificial joint. The wear particles isolated from lubricating liquid were divided broadly into two categories; one is “simple type” and the other is “complicated type”. The lengths in a longitudinal direction (Ll) and its orthogonal direction (Ls) for each particles (>150) were measured, and the each aspect ratio (= Ll/Ls) was calculated. No significant difference was found in the ratio between simple type and complicated type, and in the distributions of aspect ratios. However, the distributions of Ll, which means the size of UHMWPE wear particle, were dramatically changed by using the nano-textured surface (Figure 2). These results suggest that the nano-textured surface does not change the morphological aspect of UHMWPE particle but enlarges the size of UHMWPE particle. Cells (RAW264.7, blood, Mouse) were cultured with the particles in supplemented Dulbecco's modified Eagle's medium for 24 h in an atmosphere of 5% CO. 2. in air at 37 degrees C, and the quantitative PCR was performed for genetic expression of IL-6 (Figure 3). The wear debris generated on the nano-textured surface inhibited the genetic expression of IL-6, which does not induce the tissue reaction and joint loosening


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 190 - 190
1 Jun 2012
Raaii F
Full Access

Numerous investigators have described osteogenic differentiation of bone marrow stromal cells obtained from both murine and human sources over the past decade. The ease of access and large available quantity of adipose tissue, however, makes Adipose-Derived Stem Cells (ADSC) a far more practical alternative for clinical applications, such as operative treatment of non-unions and regeneration of critical bone defects. Therefore, the primary goal of this research endeavor is to achieve osteogenic differentiation of ADSC. Previous work has already demonstrated that bone morphogenetic protein receptor 1A (BMP receptor 1A) signaling is required for healing critical bone defects. Based on this evidence, we used a lentiviral vector to increase expression of BMP receptor 1A by our stem cell population in order to direct their differentiation into the osteoblastic lineage. We harvested subcutaneous adipose tissue intraoperatively from consenting patients undergoing elective lipoplasty and panniculectomy procedures. The stromal vascular fraction was isolated from this tissue and further refined by passaging in selective media to yield a stable population of ADSC in primary culture. Both the identity and homogeneity of this stem cell population was confirmed using adipogenic induction media and differentiation cocktails. In addition, we subcloned an expression plasmid containing the BMP receptor 1A locus in tandem with green fluorescent protein (GFP) under the transcriptional control of a single promoter. This plasmid was packaged into a lentiviral vector to provide a reliable method of achieving both genomic integration and long-term expression of the BMP receptor 1A gene. Hence, transduction of ADSC using this vector resulted in overexpression of BMP receptor 1A by these multipotent cells. The GFP was then utilized as a reporter gene to screen and enrich the ADSC population for only those stem cells with a robust expression of BMP receptor 1A. The ADSC that overexpressed BMP receptor 1A were found to achieve osteogenic differentiation after 18 to 20 days of in vitro culture, as revealed by immunohistochemistry assays for osteocalcin. Osteogenic differentiation was further confirmed by alizarin red staining and quantitative PCR for alkaline phosphatase gene expression as a biomarker for the osteoblastic lineage. Our results demonstrate that stem cells derived from the adipose tissue of a patient represent a viable means of culturing autologous osteoblasts in vitro for future implantation at the site of critical bone defects. This method of attaining osseous regeneration is intuitively appealing, given the minimal donor site morbidity associated with removing subcutaneous fat. By transducing the ADSC with a lentiviral vector, we have also collected further evidence implicating the critical importance of signaling mediated by the BMP receptor 1A during osteogenesis. Further tissue engineering studies are now in progress to evaluate the osteogenic differentiation potential of these stem cells under hydrostatic and fluid flow shearing mechanical loads


Bone & Joint Open
Vol. 1, Issue 7 | Pages 392 - 397
13 Jul 2020
Karayiannis PN Roberts V Cassidy R Mayne AIW McAuley D Milligan DJ Diamond O

Aims

Now that we are in the deceleration phase of the COVID-19 pandemic, the focus has shifted to how to safely reinstate elective operating. Regional and speciality specific data is important to guide this decision-making process. This study aimed to review 30-day mortality for all patients undergoing orthopaedic surgery during the peak of the pandemic within our region.

Methods

This multicentre study reviewed data on all patients undergoing trauma and orthopaedic surgery in a region from 18 March 2020 to 27 April 2020. Information was collated from regional databases. Patients were COVID-19-positive if they had positive laboratory testing and/or imaging consistent with the infection. 30-day mortality was assessed for all patients. Secondly, 30-day mortality in fracture neck of femur patients was compared to the same time period in 2019.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 27 - 30
1 Jan 2016
Whitehouse MR Parry MC Konan S Duncan CP

Periprosthetic joint infection (PJI) complicates between 0.5% and 1.2% primary total hip arthroplasties (THAs) and may have devastating consequences. The traditional assessment of patients suffering from PJI has involved the serological study of inflammatory markers and microbiological analysis of samples obtained from the joint space. Treatment has involved debridement and revision arthroplasty performed in either one or two stages.

We present an update on the burden of PJI, strategies for its diagnosis and treatment, the challenge of resistant organisms and the need for definitive evidence to guide the treatment of PJI after THA.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):27–30.