Purpose. In total elbow arthroplasty (TEA), especially for elbows with condyle defect due to rheumatoid arthritis or trauma, determination of rotation alignment of implants is often difficult. To develop a navigation system for TEA, selecting bony landmarks that can be identified intraoperatively is important. Therefore, we developed a new roentgen free navigation system such as special alignment jigs for TEA based on CT data of normal elbows. The aim of this study was to evaluate alignments of implants after MIS-TEA using the new systems. And also, we reported that 6 bony landmarks on the elbow showed small variability in normal elbows by CT examinations and were considered to be usable as intraoperative landmarks for determining rotational position of implants last year. Especially in RA elbow, posterior aspect of humerus and ulnar aspect of proximal part of ulna were able to be identified even if there is a large bone defect that extends to the lateral or/and medial epicondyle. We used a new roentgen free navigation system in TEA with using Solar elbow from 2009. The aim of this study was to evaluate alignments of implants after MIS-TEA using the new systems by CT examinations. MATERIALS AND METHODS. For determination of alignment and anatomical landmarks to develop the jigs, 3D-CT data of 11 normal elbows was investigated. The posterior aspect of humeral shaft and ulnar aspect of
Previous biomechanical studies of lateral collateral ligament (LCL) injuries and their surgical repair, reconstruction and rehabilitation have primarily relied on gravity effects with the arm in the varus position. The application of torsional moments to the forearm manually in the laboratory is not reproducible, hence studies to date likely do not represent forces encountered clinically. The aim of this investigation was to develop a new biomechanical testing model to quantify posterolateral stability of the elbow using an in vitro elbow motion simulator. Six cadaveric upper extremities were mounted in an elbow motion simulator in the varus position. A threaded screw was then inserted on the dorsal aspect of the
Fracture or resection of the radial head can cause unbalance and long-term functional complications in the elbow. Studies have shown that a radial head excision can change elbow kinematics and decrease elbow stability. The radial head is also important in both valgus and varus laxity and displacement. However, the effect of radial head on ulnohumeral joint load is not known. The objective of this experimental study was to compare the axial loading produced at the ulnohumeral joint during active flexion with and without a radial head resection. Ten cadaveric arms were used. Each specimen was prepared and secured in an elbow motion simulator. To simulate active flexion, the tendons of the biceps, brachialis, brachioradialis, and triceps were attached to servo motors. The elbow was moved through a full range of flexion. To quantify loads at the ulnohumeral joint, a load cell was implanted in the
Introduction. Hemiarthroplasty is a treatment option for comminuted fractures and non-unions of the distal humerus. Unfortunately, the poor anatomical fit of off-the-shelf distal humeral hemiarthroplasty (DHH) implants can cause altered cartilage contact mechanics. The result is reduced contact area and higher cartilage stresses, thus subsequent cartilage erosion a concern. Previous studies have investigated reverse-engineered DHH implants which reproduce the shape of the distal humerus bone or cartilage at the articulation, but still failed to match native contact mechanics. In this study, design optimization was used to determine the optimal DHH implant shape. We hypothesized that patient-specific optimal implants will outperform population-optimized designs, and both will optimize simple reverse-engineered designs. Methods. The boney geometries of six elbow joints were created based on cadaver arm CT data using a semi-automatic threshold technique in 3D Slicer. CT scans were also obtained with the elbows denuded and disarticulated, such that the high contrast between hydrated cartilage and air could be exploited in order to reconstruct cartilage geometry. Using this 3D model data, finite element contact models were created for each elbow, where bones (distal humerus,
We report the case of a 12-year-old boy with flexion loss in the left elbow caused by deficient of the concavity corresponding to the coronoid fossa in the distal humerus. The range of motion (ROM) was 15°/100°, and pain was induced by passive terminal flexion. Plain radiographs revealed complete epiphyseal closure, and computed tomography (CT) revealed a flat anterior surface of the distal humerus; the coronoid fossa was absent. Then, the bony morphometric contour was surgically recreated using a navigation system and a three-dimensional elbow joint model. A three-dimensional model of the elbow joint was made preoperatively and the model comprising the distal humerus was milled so that elbow flexion flexion of more than 140° could be achieved against the
Purpose. Assess and report the functional and post-operative outcomes of complex acute radial head fractures with elbow instability treated by arthroplasty using an uncemented modular anatomic prosthesis. Methods. Over a 3-year period (2007–2010), 21 patients (mean age 51.9 years) were treated primarily with modular radial head arthroplasty (mean follow up of 27.1 months). Data was collected retrospectively using clinical notes, operation documentation and prospectively using validated scoring systems namely the Oxford Elbow Index, Quick DASH and the Mayo Elbow Performance Score. Associated elbow fractures, ligamentous injury and short to mid term post-operative outcomes including radiographic assessment were recorded. Results. The mean Oxford Elbow Score was 34.80 (range 20–48). The mean Quick Dash score was 26.01 (range 0–68.2). The Mayo Performance score showed 6 scored excellent, 5 scored good, 3 scored fair and 2 scored poor. Regarding post-operative outcomes, 1 patient had a radial head dislocation, 1 patient had prosthesis removal for ongoing pain and 1 patient had a total elbow replacement due to associated
Elective surgery has been severely curtailed as a result of the COVID-19 pandemic. There is little evidence to guide surgeons in assessing what processes should be put in place to restart elective surgery safely in a time of endemic COVID-19 in the community. We used data from a stand-alone hospital admitting and operating on 91 trauma patients. All patients were screened on admission and 100% of patients have been followed-up after discharge to assess outcome.Aims
Methods