Introduction: Proteoglycans are found both in the annulus fibrosus and nucleus pulposus of the intervertebral disc and contribute to the hydration of the tissue (aggrecan) and the regulation of matrix assembly (small proteoglycans) [. 1. ]. Whilst loss of
Although the function of
Osteoarthritis (OA) is a chronic degenerative joint disorder that affects millions of people. There are currently no therapies that reverse or repair cartilage degradation in OA patients. Link N (DHLSDNYTLDHDRAIH) is a naturally occurring peptide that has been shown to increase both collagen and
To unravel the relation between mechanical loading and biological response, cell-seeded hydrogel constructs can be used in bioreactors under multi-axial loading conditions that combines compressive with torsional loading. Typically, considerable biological variation is observed. This study explores the potential confounding role of mechanical factors in multi-directional loading experiments. Indeed, depending on the material properties of the constructs and characteristics of the mechanical loading, the mechanical environment within the constructs may vary. Consequently, the local biological response may vary from chondrogenesis in some parts to
Aims. Cartilage injuries rarely heal spontaneously and often require surgical intervention, leading to the formation of biomechanically inferior fibrous tissue. This study aimed to evaluate the possible effect of amelogenin on the healing process of a large osteochondral injury (OCI) in a rat model. Methods. A reproducible large OCI was created in the right leg femoral trochlea of 93 rats. The OCIs were treated with 0.1, 0.5, 1.0, 2.5, or 5.0 μg/μl recombinant human amelogenin protein (rHAM. +. ) dissolved in propylene glycol alginate (PGA) carrier, or with PGA carrier alone. The degree of healing was evaluated 12 weeks after treatment by morphometric analysis and histological evaluation. Cell recruitment to the site of injury as well as the origin of the migrating cells were assessed four days after treatment with 0.5 μg/μl rHAM. +. using immunohistochemistry and immunofluorescence. Results. A total of 12 weeks after treatment, 0.5 μg/μl rHAM. +. brought about significant repair of the subchondral bone and cartilage. Increased expression of
Osteoarthritis (OA) is a multifactorial debilitating disease that affects over four million Canadians. Although the mechanism(s) of OA onset is unclear, the biological outcome is cartilage degradation. Cartilage degradation is typified by the progressive loss of extracellular matrix components - aggrecan and type II collagen (Col II) – partly due to the up-regulation of catabolic enzymes - aggrecanases a disintegrin and metalloprotease with thrombospondin motifs (ADAMTS-) 4 and 5 and matrix metalloproteinases (MMPs). There is currently no treatment that will prevent or repair joint damage, and current medications are aimed mostly at pain management. When pain becomes unmanageable arthroplastic surgery is often performed. Interest has developed over the presence of calcium crystals in the synovial fluid of OA patients, as they have been shown to activate synovial fibroblasts inducing the expression of catabolic agents. We recently discovered elevated levels of free calcium in the synovial fluid of OA patients and raised the question on its role in cartilage degeneration. Articular cartilage was isolated from 5 donors undergoing total hip replacement. Chondrocytes were recovered from the cartilage of each femoral head or knee by sequential digestion with Pronase followed by Collagenase and expanded in DMEM supplemented with 10% heat-inactivated FBS. OA and normal human articular chondrocytes (PromoCell, Heidelberg, Germany) were transferred to 6-well plates in culture medium containing various concentrations of calcium (0.5, 1, 2.5, and 5 mM CaCl2), and IL-1β. Cartilage explants were prepared from the same donors and included cartilage with the cortical bone approximately 1 cm2 in dimension. Bovine articular cartilage explants (10 months) were used as a control. Explants were cultured in the above mentioned media, however, the incubation period was extended to 21 days. Immunohistochemistry was performed on cartilage explants to measure expression of Col X, MMP-13, and alkaline phosphatase. The sulfated glycosaminoglycan (GAG, predominantly aggrecan) content of cartilage was analyzed using the 1,9-dimethylmethylene blue (DMMB) dye-binding assay, and aggregan fragmentation was determined by Western blotting using antibody targeted to its G1 domain. Western blotting was also performed on cell lysate from both OA and normal chondrocytes to measure aggrecan, Col II, MMP-3 and −13, ADAMTS-4 and −5. Ca2+ significantly decreased the
Calcification of the intervertebral disc (IVD) has been correlated with degenerative disc disease (DDD), a common cause of low back pain. The appearance of calcium deposits has been shown to increase with age, and its occurrence has been associated with several other disorders such as hyperparathyroidism, chondrocalcinosis, and arthritis. Trauma, vertebral fusion and infection have also been shown to increase the incidence of IVD calcification. The role of IVD calcification in the development DDD is unknown. Our preliminary data suggest that ionic calcium content and expression of the extracellular calcium-sensing receptor (CaSR), a G protein-coupled receptor (GPCR) and regulator of calcium homeostasis, are increased in the degenerated discs. However, its role in DDD remains unclear. IVD Cells: Bovine and normal human IVD cells were incubated in PrimeGrowth culture medium (Wisent Bioproducts, Canada; Cat# 319–510-CL, −S1, and S2) and supplemented with various concentrations of calcium (1.0, 1.5, 2.5, 5.0 mM), a CaSR agonist [5 µM], or IL-1β [10 ng/ml] for 7 days. Accumulated matrix protein was quantitated for aggrecan and type II collagen (Col II) by Western blotting. Conditioned medium was also collected from cells treated for 24h and measured for the synthesis and release of total
Specific antisera to collagen Types I, II and III and
Summary Statement. This study quantifies compositional differences in cartilage between CAM deformities of symptomatic FAI patients and normal cadaver controls. It shows a resemblance of CAM-FAI cartilage with those of osteoarthritic hips, objectively supporting previous hypothesis of abnormal contact stresses in CAM-FAI. Introduction. Degeneration of cartilage within articular joints is a pathological feature of osteoarthritis (OA). Femoroacetabular impingement (FAI), a condition of abnormal contact between the articular surfaces of the femur and acetabulum, has been widely associated with early onset OA of the hip. The purpose of this study was to quantitatively compare the
Dynamic compressive loading of cartilage can support extracellular matrix (ECM) synthesis whereas abnormal loading such as disuse, static loading or altered joint biomechanics can disrupt the ECM, suppress the biosynthetic activity of chondrocytes and lead to osteoarthritis. Interactions with the pericellular matrix are believed to play a critical role in the response of chondrocytes to mechanical signals. Loading of intact cartilage explants can stimulate
Purpose: The inflammatory response around herniated tissue in the epidural space is believed to play a major role in the spontaneous regression of herniated lumbar disc. Numerous macrophages invade the herniated tissue along with newly formed blood vessels which influence oxygen gradient. Inflammatory cytokines such as interleukin-1 are produced by macrophages. These chemical mediators could stimulate disc cells to produce proteases such as MMPs which degrade the intervertebral disc matrix and could hence influence regression of the herniation. Here we have examined the influence of IL-1β and oxygen tension on
Lesions within the articular cartilage layer of synovial joints do not heal spontaneously. Some repair cells may appear, but their failure to become established may be related to problems of adhesion to proteoglycan-rich surfaces. We therefore investigated whether controlled enzymatic degradation of surface
Background. Proteoglycans (PGs) have long been known to be important to the functioning of the intervertebral disc. The most common PG is aggrecan, but there are also small leucine-rich
Purpose: In vivo, intertervertebral disc cells exist in a low oxygen environment ranging from 5% O2 for the annulus fibrosus (AF) cells to 1% O2 for the nucleus pulpous (NP) cells. Various conditions have been used for in vitro cell culture and seem that AF and NP cells can respond differently in the different systems, which may differ from the in vivo environment in terms of nutrient supply, O2 levels and biomechanical loading. The aim of this study was to determine how AF and NP cells respond to different O2 concentrations when cultured in a 3 dimensional system consisting of an alginate scaffold. Methods: Bovine AF and NP cells were embedded in alginate beads and incubated in airtight polypropylene containers at different O2 concentration of 1%, 5% or 21%. Culture medium was changed every third day and the culture was carried out for 21 days. The pro-teoglycan content of the medium was analyzed using the DMMB assay. Cells were recovered from the alginate beads at two time points, day 8 and day 21 and RT-PCR was performed to amplify gene expression of GAPDH and aggrecan. Results: In both cell types, the cumulative production of GAG increased with time in culture up to day 9, and then tended to plateau in the AF cells but continue to increase in the NP cells. At all time points, the level of GAG synthesis by NP cells was greater than by AF cells. All GAG synthesis trends were the similar at all O2 levels (1%, 5% and 21%). Conclusions: In the alginate scaffold NP cells continue to exhibit their in situ behaviour by producing more
Signalling by growth differentiation factor 6 (GDF6/BMP13) has been implicated in the development and maintenance of healthy NP cell phenotypes and GDF6 mutations are associated with defective vertebral segmentation in Klippel-Feil syndrome. GDF6 may thus represent a promising biologic for treatment of IVD degeneration. This study aimed to investigate the effect of GDF6 in human NP cells and critical signal transduction pathways involved. BMP receptor expression profile of non-degenerate and degenerate human NP cells was determined through western blot, immunofluorescence and qPCR. Phosphorylation statuses of Smad1/5/9 and non-canonical p38 MAPK and Erk1/2 were assessed in the presence/absence of pathway blockers. NP marker and matrix degrading enzyme gene expression was determined by qPCR following GDF6 stimulation. Glycosaminoglycan and collagen production were assessed through DMMB-assay and histochemical staining.Background
Methods
Animal experimental studies indicate that pulsed low-intensity ultrasound might enhance cartilage repair in early stages of osteoarthritis (OA) and to improve healing of osteochondral defects. The purpose of this in vitro study was to determine systematically whether and to what extent pulsed low-intensity ultrasound
influences the synthesis and release of PGs, modulates chondrocyte viability within human osteoarthritic cartilage explants, and is affected by the degree of OA alterations. Full-thickness cartilage explants of the lateral compartment of the proximal tibia were taken from OA patients undergoing knee replacement surgery. Explants with mild or moderate OA alterations were cultured in a CO2-incubator at 37°C, 5% CO2 and 95% relative humidity. After 2 days, explants were subjected to ultrasound applied in a pulsed-wave form (1: 4) on the following 3 days. The ultrasound application apparatus was specifically designed and constructed to function within an explant culture system under sterile conditions. The effect of the ultrasound parameters intensity (2, 30, 120, 250 mW/cm2), duration (20, 3 × 30 minutes/day) and frequency (0.5, 1.2, 4.7 MHz) on PG synthesis and release were measured. PG synthesis was determined by the incorporation of 35SO4 during the final 22 h of the experiments whereas the content of PGs were quantitated with the DMMB-assay. The viability of chondrocytes was assessed microscopically using fluorescein diacetate and propidium iodide. Results were compared to untreated explants from the same joint. Each experimental condition was repeated five times using explants always obtained frrom 6 different patients (N=6). Neither the degree of OA alterations of explants, nor the various ultrasound parameters tested displayed any significant effect on the synthesis and release of PGs as well as on the viability of explants. This work was supported by the Deutsche Arthrose-Hilfe e.V.
Large cartilage lesions in younger patients can be treated by fresh osteochondral allograft transplantation, a surgical technique that relies on stable initial fixation and a minimum chondrocyte viability of 70% in the donor tissue to be successful. The Missouri Osteochondral Allograft Preservation System (MOPS) may extend the time when stored osteochondral tissues remain viable. This study aimed to provide an independent evaluation of MOPS storage by evaluating chondrocyte viability, chondrocyte metabolism, and the cartilage extracellular matrix using an ovine model. Femoral condyles from twelve female Arcott sheep (6 years, 70 ± 15 kg) were assigned to storage times of 0 (control), 14, 28, or 56 days. Sheep were assigned to standard of care [SOC, Lactated Ringer's solution, cefazolin (1 g/L), bacitracin (50,000 U/L), 4°C storage] or MOPS [proprietary media, 22-25°C storage]. Samples underwent weekly media changes. Chondrocyte viability was assessed using Calcein AM/Ethidium Homodimer and reported as percent live cells and viable cell density (VCD). Metabolism was evaluated with the Alamar blue assay and reported as Relative Fluorescent Units (RFU)/mg. Electromechanical properties were measured with the Arthro-BST, a device used to non-destructively compress cartilage and calculate a quantitative parameter (QP) that is inversely proportional to stiffness.
Background. Magnetic resonance imaging (MRI) algorithm identifies end stage severely degenerated disc as ‘black’, and a moderately degenerate to non-degenerated disc as ‘white’. MRI is based on signal intensity changes that identifies loss of
Nitric oxide is a free radical which in vivo is solely produced during the conversion of the amino acid arginine into citrulline by nitric oxide synthase enzymes. Recently, the importance of nitric oxide on inflammation and bone metabolism has been investigated. However, the knowledge regarding possible in vitro effects of arginine supplementation on chondrogenic differentiation is limited. ATDC5, a cell line which is derived from mouse teratocarcinoma cells and which is characterized as chondrogenic cell line, were proliferated in Dulbecco's Modified Eagle Medium (DMEM)/F12 and subsequently differentiated in proliferation medium supplemented with insulin, transferrin and sodium-selenite and where arginine was added in four different concentrations (0, 7.5, 15 and 30 mM). Samples were harvested after 7 or 10 days and were stored at −80 °C for subsequent RNA isolation for qPCR analysis. To determine chondrogenic differentiation, Alcian Blue staining was performed to stain the