Advertisement for orthosearch.org.uk
Results 1 - 13 of 13
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 55 - 55
1 Apr 2018
Lenguerrand E Whitehouse M Beswick A Kunutsor S Burston B Porter M Blom A
Full Access

Introduction. Prosthetic joint infection (PJI) is an uncommon but serious complication of hip replacement. A recent systematic review of patient risk factors for PJI identified male gender, smoking status, increasing BMI, steroid use, previous joint surgery and comorbidities of diabetes, rheumatoid arthritis and depression as risk factors for developing PJI. Limitations of the current literature include the short term follow up of most published studies. We investigated the role of patient, surgical and healthcare factors on the risk of revision of a primary hip replacement for PJI at different time-points in the post-operative follow-up. It is important that those risk factors are identified so that patients can be appropriately counselled according to their individual risk profile prior to surgery and modifiable factors can be addressed to reduce the risk of PJI at an individual and healthcare system level. Materials and Methods. Primary hip replacements and subsequent revision procedures performed for PJI from 2003–2014 were identified from the National Joint Registry (NJR). Patient (age, gender, ASA grade, BMI), perioperative (surgical indication, type of anaesthesia, thromboprophylaxis regime, surgical approach, hip replacement and bearing surface and use of femoral or acetabular bone graft) and healthcare system characteristics (surgeon grade, surgical volume) were linked with data from Hospital Episode Statistics to obtain information on specific ethnicity and comorbidities (derived from the Charlson index). Multilevel piecewise exponential non-proportional hazards models were used to estimate their effects at different post-operative periods (0–3 months, 3–6 months, 6–12 months, 12–24 and >24 months post-operation). Results. The index hip replacements consisted of 623,253 primaries with 2,705 subsequently revised for PJI, 14% within 3 months, 8% between 3–6 months, 14% between 6–12 months, 22% between 1–2 years and 42% ≥2 years after the index procedure. Risk factors for revision of PJI included male gender, high BMI, high ASA grade and younger age. Their effects were period-specific. Patients with chronic pulmonary disease, diabetes or dementia had high early risk of revision for PJI, as did patients operated for a fractured neck of femur (<3 months). Metal-on-metal bearings (>12 months) and lateral surgical approach (≥3 months) also influenced the mid- and long-term revision risk for PJI. No or modest associations were found with the operating surgeon grade, surgical volume and hospital surgical volume. Conclusion. The effects of patient, perioperative and healthcare system risk factors for PJI after primary hip replacement are time-dependent. Modifiable risk factors such as the type of surgical approach and bearing surface have also been found


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 22 - 22
1 Aug 2013
Grant S Ralte P Moripudi S Denn P Barnes K
Full Access

Intraoperative cell salvage involves the collection of blood directly from the operative field. The purpose of this study was to determine if its use reduces the need for postoperative allogenic blood transfusion, assess any adverse events and its effect on duration of postoperative stay in primary hip arthroplasty. We prospectively examined the effect of intraoperative cell salvage on the need for postoperative allogenic blood transfusion. Between February 2009 and August 2010, a total of 77 patients who underwent primary total hip arthroplasty were included in the study, under the care of the senior author (KB). All patients had a diagnosis of osteoarthritis. Intraoperative cell salvage was used in 38 patients and not used in 39 patients. We prospectively collected data on patient demographics, ASA grade, preoperative and postoperative haematological features, number of units of packed red cells transfused and the volume of intraoperative reinfused cell salvaged blood was. Total inpatient stay and any postoperative adverse events were recorded. No patients in the cell salvage group required postoperative allogenic blood transfusion compared to three patients (7.7%) in the conventional group. Postoperative decrease in haemoglobin was less in the cell salvage group (2.57 vs. 3.3 g/dL). The mean length of postoperative inpatient stay was shorter in the cell salvage group (5.1 vs. 6.41 days). Three patients in the cell salvage group had adverse events (1 UTI, 1 hyponatraemia, 1 colonic pseudo-obstruction). Three patients in the conventional group experienced adverse events (2 superficial wound infections, 1 DVT). An average of 361mls of cell salvaged blood was reinfused (110–900mls). We have found that the use of intraoperative cell salvage in patients undergoing primary total hip arthroplasty reduces the need for post operative allogenic blood transfusion with no increase in adverse events when compared to conventional measures of blood preserving techniques


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 6 - 6
1 Jan 2017
Lenguerrand E Whitehouse M Wylde V Gooberman-Hill R Blom A
Full Access

Patients report similar or better pain and function before revision hip arthroplasty than before primary arthroplasty but poorer outcomes after revision surgery. The trajectory of post-operative recovery during the first 12 months and any differences by type of surgery have received little attention. We explored the trajectories of change in pain and function after revision hip arthroplasty to 12-months post-operatively and compared them with those observed after primary hip arthroplasty. We conducted a single-centre UK cohort study of patients undergoing primary (n = 80) or revision (n = 43) hip arthroplasty. WOMAC pain and function scores and 20-metres walking time were collected pre-operatively, at 3 and 12-months post-operatively. Multilevel regression models were used to chart and compare the trajectories of post-operative change (0–3 months and 3–12 months) between the types of surgery. Patients undergoing primary arthroplasty had a total hip replacement (n=74) or hip resurfacing (n=6). Osteoarthritis was the indication for surgery in 92% of primary cases. Patients undergoing revision arthroplasty had revision of a total hip arthroplasty (n=37), hemiarthroplasty (n=2) or hip resurfacing (n=4). The most common indication for revision arthroplasty was aseptic loosening (n=29); the remaining indications were pain (n=4), aseptic lymphocyte-dominated vasculitis-associated lesion (n=4) or other reasons (n=6). Primary (87%) and revision arthroplasties (98%) were mostly commonly performed via a posterior surgical approach. The improvements in pain and function following revision arthroplasty occurred within the first 3-months following operation (WOMAC-pain, p<0.0001; WOMAC-function, p<0.0001; timed 20-metres walk, p<0.0001) with no evidence of further change beyond this initial period (p>0.05). While the pattern of recovery after revision arthroplasty was similar to that observed after primary arthroplasty, improvements in the first 3-months were smaller after revision compared to primary arthroplasty (p<0.0001). Patients listed for revision surgery reported lower pre-operative pain levels (p=0.03) but similar post-operative levels (p=0.268) compared to those undergoing primary surgery. At 12-months post-operation patients who underwent a revision arthroplasty had not reached the same level of function achieved by those who underwent primary arthroplasty (WOMAC-function p=0.015; Time walk p=0.004). Patients undergoing revision hip arthroplasty should be informed that the majority of their improvement will occur in the first 3-months following surgery and that the expected improvement will be less marked than that experienced following primary surgery. More research is now required to 1.) identify whether specific in-patient and post-discharge rehabilitation tailored towards patients undergoing revision arthroplasty would improve or achieve equivalent outcomes to primary surgery and 2.) whether patients who are achieving limited improvements at 3-months post-operative would benefit from more intensive rehabilitation. This will become all the more important with the increasing volume of revision surgery and the high expectations of patients who aspire to a disease-free and active life


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 33 - 33
2 Jan 2024
Emonde C Reulbach M Evers P Behnsen H Nürnberger F Jakubowitz E Windhagen H
Full Access

According to the latest report from the German Arthroplasty Registry, aseptic loosening is the primary cause of implant failure following primary hip arthroplasty. Osteolysis of the proximal femur due to the stress-shielding of the bone by the implant causes loss of fixation of the proximal femoral stem, while the distal stem remains fixed. Removing a fixed stem is a challenging process. Current removal methods rely on manual tools such as chisels, burrs, osteotomes, drills and mills, which pose the risk of bone fracture and cortical perforation. Others such as ultrasound and laser, generate temperatures that could cause thermal injury to the surrounding tissues and bone. It is crucial to develop techniques that preserve the host bone, as its quality after implant removal affects the outcome of a revision surgery. A gentler removal method based on the transcutaneous heating of the implant by induction is proposed. By reaching the glass transition temperature (T. G. ) of the periprosthetic cement, the cement is expected to soften, enabling the implant to be gently pulled out. The in-vivo environment comprises body fluids and elevated temperatures, which deteriorate the inherent mechanical properties of bone cement, including its T. G. We aimed to investigate the effect of fluid absorption on the T. G. (ASTM E2716-09) and Vicat softening temperature (VST) (ISO 306) of Palacos R cement (Heraeus Medical GmbH) when dry and after storage in Ringer's solution for up to 8 weeks. Samples stored in Ringer's solution exhibited lower T. G. and VST than those stored in air. After 8 weeks, the T. G. decreased from 95.2°C to 81.5°C in the Ringer's group, while the VST decreased from 104.4°C to 91.9°C. These findings will be useful in the ultimate goal of this project which is to design an induction-based system for implant removal. Acknowledgements: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB/TRR-298-SIIRI – Project-ID 426335750


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 10 - 10
1 Nov 2021
Jamieson S Tyson-Capper A Hyde P Kirby J
Full Access

Introduction and Objective. Total joint replacement (TJR) is indicated for patients with end-stage osteoarthritis (OA) where conservative treatment has failed. Approximately 1.3 million primary hip replacement surgeries have been recorded in the United Kingdom since 2003 and this number is set to rise due to an increase in obesity as well as an ageing population. Total hip replacement (THR) has a survival rate of 85% at 20 years; the most common reason for failure is aseptic loosening which often occurs secondary to osteolysis caused by immune-mediated inflammation responses to wear debris generated from the materials used in the THR implant. Therefore, by understanding the biological steps by which biomaterials cause immune-mediated reactions it should be possible to prevent them in the future thereby reducing the number of costly revision surgeries required. Materials and Methods. The human osteoblast-like cell line (MG-63) was seeded at a density of 100,000 cell per well of a 6-well plate and treated with and increasing doses (0.5, 5, and 50mm. 3. per cell) of cobalt-chromium (CoCr) particles generated on a six-station pin-on-plate wear generator or commercially available ceramic oxide nanopowders (Al. 2. O. 3. and ZrO. 2. ) for 24 hours. TNF-alpha was used as a positive control and untreated cells as a negative control. Cells were then analysed by transmission electron microscopy (TEM) to determine whether the osteoblasts were capable of phagocytosing these biomaterials. MG-63 cells were used in conjunction with trypan blue and the XTT Cell Proliferation II Kit to assess cytotoxicity of the biomaterials investigated. Cells supernatants were also collected and analysed by enzyme-linked immunosorbant assay (ELISA) to investigate changes in pro-inflammatory protein secretion. Protein extracted from lysed cells was used for western blotting analysis to investigate RANKL protein expression to determine changes to osteolytic activation. Lysed cells were also used for RNA extraction and subsequent cDNA synthesis for real-time quantitative polymerase chain reaction (RT-qPCR) in order to assess changes to pro-inflammatory gene expression. Results. There was no significant change to cellular viability or proliferation in the osteoblasts treated with CoCr, Al. 2. O. 3. or ZrO. 2. when compared to the untreated negative control. TEM images showed clear and distinct intracellular vesicles within the cell cytoplasm which contained CoCr, Al. 2. O. 3. and ZrO. 2. RANKL expression increased at 5 and 50mm. 3. per cell CoCr and 50mm. 3. per cell Al. 2. O. 3. and ZrO. 2. Pro-inflammatory protein secretion of CXCL10, IL-8, and IL-6 all significantly increased at 50mm. 3. per cell CoCr, Al. 2. O. 3. , and ZrO. 2. Similarly to the protein secretion, CXCL10, IL-8, and IL-6 gene expression was significantly upregulated at 50mm. 3. per cell CoCr, Al. 2. O. 3. , and ZrO. 2. Conclusions. Increased in vitro RANKL expression in response to CoCr, Al. 2. O. 3. , and ZrO. 2. may result in disruption of bone metabolism and lead to osteolysis which can contribute to aseptic loosening in vivo. Significant increases in IL-6 are particularly important because as well as being a pro-inflammatory cytokine, IL-6 is also secreted by osteoblasts in order to stimulate mature osteoclast formation to mediate bone breakdown. CXCL10 and IL-8 are chemotactic cytokines and increased secretion in response to implant biomaterials can contribute to ongoing pro-inflammatory responses through the recruitment of monocytes and neutrophils respectively. This is interesting as in vivo data demonstrates increased cellular infiltrate in patients experiencing responses to implant materials. Overall, these findings show clear immune activation as well as altered metabolism of MG-63 osteoblast cells in response to implant wear debris which is in agreement with in vivo clinical reports


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 65 - 65
1 Jan 2017
Lenguerrand E Whitehouse M Beswick A Jones S Porter M Toms A Blom A
Full Access

Prosthetic joint infection (PJI) is an uncommon but serious complication of hip and knee replacement. We investigated the rates of revision surgery for the treatment of PJI following primary and revision hip and knee replacement, explored time trends, and estimated the overall surgical burden created by PJI. We analysed the National Joint Registry for England and Wales for revision hip and knee replacements performed for a diagnosis of PJI and their index procedures from 2003–2014. The index hip replacements consisted of 623,253 primary and 63,222 aseptic revision hip replacements with 7,642 revisions subsequently performed for PJI; for knee replacements the figures were 679,010 primary and 33,920 aseptic revision knee replacements with 8,031 revisions subsequently performed for PJI. Cumulative incidence functions, prevalence rates and the burden of PJI in terms of total procedures performed as a result of PJI were calculated. Revision rates for PJI equated to 43 out of every 10,000 primary hip replacements (2,705/623,253), i.e. 0.43%(95%CI 0.42–0.45), subsequently being revised due to PJI. Around 158 out of every 10,000 aseptic revision hip replacements performed were subsequently revised for PJI (997/63,222), i.e. 1.58%(1.48–1.67). For knees, the respective rates were 0.54%(0.52–0.56) for primary replacements, i.e. 54 out of every 10,000 primary replacements performed (3,659/679,010) and 2.11%(1.96–2.23) for aseptic revision replacements, i.e. 211 out of every 10,000 aseptic revision replacements performed (717/33,920). Between 2005 and 2013, the risk of revision for PJI in the 3 months following primary hip replacement rose by 2.29 fold (1.28–4.08) and after aseptic revision by 3.00 fold (1.06–8.51); for knees, it rose by 2.46 fold (1.15–5.25) after primary replacement and 7.47 fold (1.00–56.12) after aseptic revision. The rates of revision for PJI performed at any time beyond 3 months from the index surgery remained stable or decreased over time. From a patient perspective, after accounting for the competing risk of revision for an aseptic indication and death, the 10-year cumulative incidence of revision hip replacement for PJI was 0.62%(95%CI 0.59–0.65) following primary and 2.25%(2.08–2.43) following aseptic revision; for knees, the figures were 0.75%(0.72–0.78) following primary replacement and 3.13%(2.81–3.49) following aseptic revision. At a health service level, the absolute number of procedures performed as a consequence of hip PJI increased from 387 in 2005 to 1,013 in 2014, i.e. a relative increase of 2.6 fold. While 70% of those revisions were two-stage, the use of single stage revision increased from 17.6% in 2005 to 38.5% in 2014. For knees, the burden of PJI increased by 2.8 fold between 2005 and 2014. Overall, 74% of revisions were two-stage with an increase in use of single stage from 10.0% in 2005 to 29.0% in 2014. Although the risk of revision due to PJI following hip or knee replacement is low, it is rising. Given the burden and costs associated with performing revision joint replacement for prosthetic joint infection and the predicted increased incidence of both primary and revision hip replacement, this has substantial implications for service delivery


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_3 | Pages 17 - 17
1 Apr 2015
Brydone A Morrison D Meek R Dalby M Gadegaard N
Full Access

Poly-ether-ether-ketone (PEEK) is a biomaterial commonly used for spinal implants and screws. It is often desirable for orthopaedic implants to osseointegrate, but as PEEK is biologically inert this will not occur. The aim of this project was to determine if injection mould nanopatterning can be used to create a make PEEK bioactive and stimulate osteogenesis in vitro. PEEK substrates were fabricated by injection mould nanopatterning to produce near-square (NSQ) nanopatterned PEEK and planar (FLAT) PEEK samples. Atomic force microscopy (AFM) and scanning electron microscopy were used to characterize the surface topography. Human bone marrow stromal cells (hBMSCs) were isolated from patients undergoing primary hip replacement operations and seeded onto the PEEK substrates. After 6 weeks the cells were stained using alizarin red S (ARS) stain (to detect calcium) and the von Kossa technique (to detect phosphate) and analyzed using CellProfiler image analysis software to determine: surface coverage; cell number; and expression of either calcium (ARS stain) or phosphate (von Kossa technique). ARS stain showed calcium expression (quantified relative to the number of cells) was increased on NSQ PEEK compared to FLAT PEEK (not statistically significant) and the surface coverage was similar. Von Kossa staining revealed more surface coverage on FLAT PEEK (69.1% cf. 31.9%), cell number was increased on FLAT PEEK (9803 ± 4066 cf. 4068 ± 1884) and phosphate expression relative to cell number was also increased (seven-fold) on NSQ PEEK (P < 0.05) compared to FLAT PEEK. Although hBMSCs may adhere to NSQ PEEK in smaller numbers, the cells expressed a relatively larger amount of calcium and phosphate. This indicates that the cells adopted a more osteoblastic phenotype and that nanopatterning PEEK induces hBMSC differentiation and stimulates osteogenesis. Injection mould nanopatterning therefore has the potential to improve osseointegration of PEEK implants in vivo


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 27 - 27
1 Jun 2012
Young PS Middleton RG Learmonth ID Minhas THA
Full Access

Total hip arthroplasty is well established as a successful treatment modality for end stage arthritis, with a variety of components currently available. However, utilising traditional stemmed implants in patients with distorted proximal femoral geometry can be technically challenging with increased risk of complications. We present seven patients with distorted proximal femoral anatomy or failed hip arthroplasty in whom a technically challenging primary or revision operation was simplified by use of a Proxima stem. This is a short, stemless, metaphyseal loading implant with a pronounced lateral flare. At twelve months follow up there have been no complications with average improvement in Oxford and Harris scores of forty and forty-nine respectively. Radiological analysis shows all stems to be stable and well fixed. Designed primarily as a bone conserving implant for primary hip arthroplasty we propose that the Proxima prosthesis also be considered in cases where a conventional stemmed implant may not be suitable due to challenging proximal femoral anatomy. The use of the stemless Proxima implant provided a simple solution in seven difficult and potentially lengthy complex primary and revision hip arthroplasties with gratifying clinical and radiological outcomes


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 5 | Pages 753 - 757
1 Jul 2002
Suh KT Chang JW Jung JS

We collected 16 samples of the membrane which surrounds loose hip prostheses from patients undergoing revision operations for aseptic loosening. To serve as the control group, samples of the synovial tissue and the fibrous capsular tissue were collected from 11 patients undergoing primary hip arthroplasties. Analyses of the expression levels of inducible nitric oxide synthase (iNOS), tumour necrosis factor-α (TNF-α), and cytosolic phospholipase A. 2. (cPLA. 2. ) mRNAs were performed by a reverse transcription polymerase chain reaction, and the content of nitrite was measured by the Griess reaction using sodium nitrite as the standard. The expression levels of iNOS, TNF-α, and cPLA. 2. mRNAs in the membranes were significantly higher than those in the control samples (p < 0.05). The expression levels of iNOS mRNA and the nitrite content in the membranes significantly correlated with those of TNF-α and cPLA. 2. mRNAs, respectively. In addition, the expression levels of iNOS, TNF-α, and cPLA. 2. mRNAs were significantly higher in membranes from cementless than in those from cemented implants (p < 0.05). Our results suggest that the expression levels of iNOS, TNF-α, and cPLA. 2. mRNAs in the membranes are regulated by closely-related mechanisms and that these have a significant role in aseptic loosening


Bone & Joint Research
Vol. 6, Issue 8 | Pages 499 - 505
1 Aug 2017
Morrison RJM Tsang B Fishley W Harper I Joseph JC Reed MR

Objectives

We have increased the dose of tranexamic acid (TXA) in our enhanced total joint recovery protocol at our institution from 15 mg/kg to 30 mg/kg (maximum 2.5 g) as a single, intravenous (IV) dose. We report the clinical effect of this dosage change.

Methods

We retrospectively compared two cohorts of consecutive patients undergoing total hip arthroplasty (THA) or total knee arthroplasty (TKA) surgery in our unit between 2008 and 2013. One group received IV TXA 15 mg/kg, maximum 1.2 g, and the other 30 mg/kg, maximum 2.5 g as a single pre-operative dose. The primary outcome for this study was the requirement for blood transfusion within 30 days of surgery. Secondary measures included length of hospital stay, critical care requirements, re-admission rate, medical complications and mortality rates.


Bone & Joint Research
Vol. 2, Issue 12 | Pages 276 - 284
1 Dec 2013
Karlakki S Brem M Giannini S Khanduja V Stannard J Martin R

Objectives

The period of post-operative treatment before surgical wounds are completely closed remains a key window, during which one can apply new technologies that can minimise complications. One such technology is the use of negative pressure wound therapy to manage and accelerate healing of the closed incisional wound (incisional NPWT).

Methods

We undertook a literature review of this emerging indication to identify evidence within orthopaedic surgery and other surgical disciplines. Literature that supports our current understanding of the mechanisms of action was also reviewed in detail.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 461 - 467
1 Mar 2010
Wik TS Østbyhaug PO Klaksvik J Aamodt A

The cortical strains on the femoral neck and proximal femur were measured before and after implantation of a resurfacing femoral component in 13 femurs from human cadavers. These were loaded into a hip simulator for single-leg stance and stair-climbing. After resurfacing, the mean tensile strain increased by 15% (95% confidence interval (CI) 6 to 24, p = 0.003) on the lateral femoral neck and the mean compressive strain increased by 11% (95% CI 5 to 17, p = 0.002) on the medial femoral neck during stimulation of single-leg stance. On the proximal femur the deformation pattern remained similar to that of the unoperated femurs.

The small increase of strains in the neck area alone would probably not be sufficient to cause fracture of the neck However, with patient-related and surgical factors these strain changes may contribute to the risk of early periprosthetic fracture.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 6 | Pages 821 - 824
1 Jun 2008
Board TN Rooney P Kay PR

In order to investigate the osteoinductive properties of allograft used in impaction grafting and the effect of strain during impaction on these properties, we designed an in vitro experiment to measure strain-related release of bone morphogenetic protein-7 (BMP-7) from fresh-frozen femoral head allograft. A total of 40 10 mm cubes of cancellous bone were cut from ten samples of fresh-frozen femoral head. The marrow was removed from the cubes and the baseline concentrations of BMP-7 were measured. Specimens from each femoral head were allocated to four groups and subjected to different compressive strains with a material testing machine, after which BMP-7 activity was reassessed. It was present in all groups. There was a linear increase of 102.1 pg/g (95% confidence interval 68.6 to 135.6) BMP-7 for each 10% increase in strain. At 80% strain the mean concentration of BMP-7 released (830.3 pg/g bone) was approximately four times that released at 20% strain. Activity of BMP-7 in fresh-frozen allograft has not previously been demonstrated. This study shows that the freezing and storage of femoral heads allows some maintenance of biological activity, and that impaction grafting provides a source of osteoinductive bone for remodelling.

We have shown that BMP-7 is released from fresh-frozen femoral head cancellous bone in proportion to the strain applied to the bone. This suggests that the impaction process itself may contribute to the biological process of remodelling and bony incorporation.