Advertisement for orthosearch.org.uk
Results 1 - 18 of 18
Results per page:
The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 103 - 108
1 Nov 2013
Abolghasemian M Tangsataporn S Sternheim A Backstein DJ Safir OA Gross AE

The conventional method for reconstructing acetabular bone loss at revision surgery includes using structural bone allograft. The disadvantages of this technique promoted the advent of metallic but biocompatible porous implants to fill bone defects enhancing initial and long-term stability of the acetabular component. This paper presents the indications, surgical technique and the outcome of using porous metal acetabular augments for reconstructing acetabular defects.

Cite this article: Bone Joint J 2013;95-B, Supple A:103–8.


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 607 - 613
1 May 2017
Mäkinen TJ Abolghasemian M Watts E Fichman SG Kuzyk P Safir OA Gross AE

Aims. It may not be possible to undertake revision total hip arthroplasty (THA) in the presence of massive loss of acetabular bone stock using standard cementless hemispherical acetabular components and metal augments, as satisfactory stability cannot always be achieved. We aimed to study the outcome using a reconstruction cage and a porous metal augment in these patients. Patients and Methods. A total of 22 acetabular revisions in 19 patients were performed using a combination of a reconstruction cage and porous metal augments. The augments were used in place of structural allografts. The mean age of the patients at the time of surgery was 70 years (27 to 85) and the mean follow-up was 39 months (27 to 58). The mean number of previous THAs was 1.9 (1 to 3). All patients had segmental defects involving more than 50% of the acetabulum and seven hips had an associated pelvic discontinuity. . Results. Three failures were observed in two hips, both of which had undergone a previous resection of a tumour affecting the acetabulum. Other complications included a late arterial injury, a sciatic nerve palsy, a dislocation treated with a femoral revision, a deep infection treated with irrigation and debridement and a fracture of the greater trochanter treated conservatively. The mean Oxford Hip Score significantly increased from 13.9 (2 to 23) to 28.7 (13 to 38) (p < 0.00001). The mean vertical distance between the centre of rotation of the hip and its normal location decreased from 30 mm to 10 mm. Conclusions. Acceptable early survivorship can be achieved using this novel technique, but it may be unsuitable for use in patients who have previously undergone the resection of a tumour involving the acetabulum. Cite this article: Bone Joint J 2017;99-B:607–13


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 20 - 20
1 Aug 2018
Ohashi H Yo H Ikawa T Minami Y Teraoka T
Full Access

Reconstruction of massive acetabular bone defects in primary and revision THA is challenging for reconstructive joint surgeons. The use of porous metal augments is one of the options. The advantages of porous metal augments are easy to use, modularity and lack of resorption. We investigated the radiological results of porous metal augments used for massive acetabular bone defects in primary and revision THA. Forty-one hips in forty patients had porous metal augments between 2011 and 2016. Thirty of the procedures were revision arthroplasties and 11 were primary procedures (Crowe type III in 5 hips, Crowe type IV in 3, septic hip sequalae in 2 and RA in one). Four of the revisions were second-stage reimplantation after infection. The Paprosky classification for revision was 2B in 4 hips, 2C in one, 3A in 3 and 3B in 22. Regenerex augments were used in 39 hips and trabecular metal augments were used in 2. Thirty-six cups were cemented and 5 cups were uncemented. Mean follow-up was 37.6 months (range, 1–82). Radiographic findings of osteointegration between host bone and the porous metal augments were assessed. The presence or absence of radiolucent lines between cement or cup/host bone and augment/host bone interface was noted. Two revisions were performed due to infection, one month and 66 months after operation. The other implants were stable without any complications. Osteointegration between host bone and the porous metal augments were recognized in 36 hips. Radiolucent lines between cement/host bone interface, less than 1 mm in width, were visualized in 2 hips. Porous metal augments are convenient and our short-term results showed excellent radiological results for massive acetabular bone defects in primary and revision THA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 1 - 1
23 Jun 2023
Parker J Horner M Jones SA
Full Access

Contemporary acetabular reconstruction in major acetabular bone loss often involves the use of porous metal augments, a cup-cage construct or custom implant. The aims of this study were: To determine the reproducibility of a reconstruction algorithm in major acetabular bone loss. To determine the subsequent success of reconstruction performed in terms of re-operation, all-cause revision and Oxford Hip Score (OHS) and to further define the indications for custom implants in major acetabular bone loss. Consecutive series of Paprosky Type III defects treated according to a reconstruction algorithm. IIIA defects were planned to use a superior augment and hemispherical cup. IIIB defects were planned to receive either augment and cup, cup-cage or custom implant. 105 procedures in cohort 100 patients (5 bilateral) with mean age 73 years (42–94). IIIA defects (50 cases) − 72.0% (95%CI 57.6–82.1) required a porous metal augment the remainder treated with a hemispherical cup alone. IIIB defects (55 cases) 71.7% (95%CI 57.6–82.1) required either augments or cup-cage. 20 patients required a hemispherical cup alone and 6 patients received a custom-made implant. Mean follow up of 7.6 years. 6 re-revisions were required (4 PJI, 2 peri-prosthetic fractures & 1 recurrent instability) with overall survivorship of 94.3% (95% CI 97.4–88.1) for all cause revision. Single event dislocations occurred in 3 other patients so overall dislocation rate 3.8%. Mean pre-op OHS 13.8 and mean follow-up OHS 29.8. Custom implants were used in: Mega-defects where AP diameter >80mm, complex discontinuity and massive bone loss in a small pelvis (i.e., unable to perform cup-cage). A reconstruction algorithm can >70% successfully predict revision construct which thereafter is durable with a low risk of re-operation. Jumbo cup utilized <1/3 of cases when morphology allowed. The use of custom implants has been well defined in this series and accounts for <5% of cases


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 21 - 21
1 Aug 2018
Zhou Y
Full Access

Failed ingrowth and subsequent separation of revision acetabular components from the inferior hemi-pelvis constitutes a primary mode of failure in revision total hip arthroplasty (THA). Few studies have highlighted other techniques than multiple screws and an ischial flange or hook of cages to reinforce the inferior fixation of the acetabular components, nor did any authors report the use of porous metal augments in the ischium and/or pubis to reinforce inferior fixation of the acetabular cup. The aims of this study were to introduce the concept of inferior extended fixation into the ischium and/or pubis during revision total hip arthroplasty, and to answer the following questions: (1) what are early clinical outcomes using inferior extended fixation and (2) what are the radiographic outcomes of hips revised with inferior extended fixation?. Patients who underwent revision THA utilizing the surgical technique of inferior extended fixation with porous metal augments secured in the ischium and/or pubis in a single institution from 2014 to 2016 were reviewed. Twenty-four patients were initially identified, and 16 patients were included based on the criteria of minimum 18 months clinical and radiographic follow-up. The median HHS, as well as the SF-12 physical and mental components improved significantly at the latest follow-up (p<0.001). The WOMAC global score decreased significantly at the latest follow-up (p<0.001). All constructs were considered to have obtained bone ingrowth fixation. Early follow-up of patients reconstructed with porous metal augments using the inferior extended fixation surgical technique demonstrated satisfactory clinical outcomes, restoration of the center of rotation and adequate biological fixation


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 18 - 18
19 Aug 2024
Sugano N Ando W Maeda Y Tamura K Uemura K Takashima K Hamada H
Full Access

In primary total hip arthroplasty (THA) for patients with Crowe II or higher classes developmental dysplasia of the hip (DDH) or rapidly destructive coxopathy (RDC), the placement of the cup can be challenging due to superior and lateral acetabular bone defects. Traditionally, bone grafts from resected femoral heads were used to fill these defects, but bulk graft poses a risk of collapse, especially in DDH with hypoplastic femoral heads or in RDC where good quality bone is scarce. Recently, porous metal augments have shown promising outcomes in revision surgeries, yet reports on their efficacy in primary THA are limited. This study retrospectively evaluated 27 patients (30 hips) who underwent primary THA using cementless cups and porous titanium acetabular augments for DDH or RDC, with follow-up periods ranging from 2 to 10 years (average 4.1 years). The cohort included 22 females (24 hips) and 5 males (6 hips), with an average age of 67 years at the time of surgery. The findings at the final follow-up showed no radiographic evidence of loosening or radiolucency around the cups and augments, indicating successful biological fixation in all cases. Clinically, there was a significant improvement in the WOMAC score from an average of 39.1±14.7 preoperatively to 5.1±6.4 postoperatively. These results suggest that the use of cementless cups and porous titanium acetabular augments in primary THA for DDH and RDC can lead to high levels of clinical improvement and reliable biological fixation, indicating their potential as a viable solution for managing challenging acetabular defects in these conditions


The Paprosky acetabular bone defect classification system and related algorithms for acetabular reconstruction cannot properly guide cementless acetabular reconstruction in the presence of porous metal augments. We aimed to introduce a rim, points, and column (RPC)-oriented cementless acetabular reconstruction algorithm and its clinical and radiographic outcomes. A total of 123 patients (128 hips) were enrolled. A minimum 5-year radiographic follow-up was available for 96 (75.8%) hips. The mean clinical and radiographic follow-up durations were 6.8±0.9 (range: 5.2–9.2) and 6.3±1.9 (range: 5.0–9.2) years, respectively. Harris hip score (HHS) improved significantly from 35.39±9.91 preoperatively to 85.98±12.81 postoperatively (P<0.001). Among the fixation modes, 42 (32.8%) hips were reconstructed with rim fixation, 42 (32.8%) with three-point fixation without point reconstruction, 40 (31.3%) with three-point fixation combined with point reconstruction, and 4 (3.1%) with three-point fixation combined with pelvic distraction. Complementary medial wall reconstruction was performed in 20 (15.6%) patients. All acetabular components were radiographically stable. Nine-year cumulative Kaplan–Meier survival rates for 123 patients with the endpoint defined as periprosthetic joint infection, any reoperation, and dissatisfaction were 96.91% (confidence interval [CI]: 86.26%, 99.34%), 97.66% (CI: 92.91%, 99.24%), and 96.06% (CI: 86.4%, 98.89%), respectively. Cup stability in cementless acetabular reconstruction depends on rim or three-point fixation. The continuity of the anterior and posterior columns determines whether the points provide adequate stability to the cup. Medial wall reconstruction is an important complementary fixation method for rim or three-point fixation. The patients who underwent cementless acetabular reconstruction guided by the RPC decision-making algorithm demonstrated satisfactory mid-term clinical function, satisfaction levels, radiographic results, and complication rates


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 73 - 77
1 Jan 2016
Mäkinen TJ Fichman SG Watts E Kuzyk PRT Safir OA Gross AE

An uncemented hemispherical acetabular component is the mainstay of acetabular revision and gives excellent long-term results. Occasionally, the degree of acetabular bone loss means that a hemispherical component will be unstable when sited in the correct anatomical location or there is minimal bleeding host bone left for biological fixation. On these occasions an alternative method of reconstruction has to be used. A major column structural allograft has been shown to restore the deficient bone stock to some degree, but it needs to be off-loaded with a reconstruction cage to prevent collapse of the graft. The use of porous metal augments is a promising method of overcoming some of the problems associated with structural allograft. If the defect is large, the augment needs to be protected by a cage to allow ingrowth to occur. Cup-cage reconstruction is an effective method of treating chronic pelvic discontinuity and large contained or uncontained bone defects. . This paper presents the indications, surgical techniques and outcomes of various methods which use acetabular reconstruction cages for revision total hip arthroplasty. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):73–7


Bone & Joint Open
Vol. 3, Issue 12 | Pages 991 - 997
23 Dec 2022
McPherson EJ Stavrakis AI Chowdhry M Curtin NL Dipane MV Crawford BM

Aims

Large acetabular bone defects encountered in revision total hip arthroplasty (THA) are challenging to restore. Metal constructs for structural support are combined with bone graft materials for restoration. Autograft is restricted due to limited volume, and allogenic grafts have downsides including cost, availability, and operative processing. Bone graft substitutes (BGS) are an attractive alternative if they can demonstrate positive remodelling. One potential product is a biphasic injectable mixture (Cerament) that combines a fast-resorbing material (calcium sulphate) with the highly osteoconductive material hydroxyapatite. This study reviews the application of this biomaterial in large acetabular defects.

Methods

We performed a retrospective review at a single institution of patients undergoing revision THA by a single surgeon. We identified 49 consecutive patients with large acetabular defects where the biphasic BGS was applied, with no other products added to the BGS. After placement of metallic acetabular implants, the BGS was injected into the remaining bone defects surrounding the new implants. Patients were followed and monitored for functional outcome scores, implant fixation, radiological graft site remodelling, and revision failures.


Bone & Joint Open
Vol. 4, Issue 2 | Pages 53 - 61
1 Feb 2023
Faraj S de Windt TS van Hooff ML van Hellemondt GG Spruit M

Aims

The aim of this study was to assess the clinical and radiological results of patients who were revised using a custom-made triflange acetabular component (CTAC) for component loosening and pelvic discontinuity (PD) after previous total hip arthroplasty (THA).

Methods

Data were extracted from a single centre prospective database of patients with PD who were treated with a CTAC. Patients were included if they had a follow-up of two years. The Hip Disability and Osteoarthritis Outcome Score (HOOS), modified Oxford Hip Score (mOHS), EurQol EuroQoL five-dimension three-level (EQ-5D-3L) utility, and Numeric Rating Scale (NRS), including visual analogue score (VAS) for pain, were gathered at baseline, and at one- and two-year follow-up. Reasons for revision, and radiological and clinical complications were registered. Trends over time are described and tested for significance and clinical relevance.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_13 | Pages 70 - 70
1 Oct 2018
Paprosky WG Sheth NP Melnic CM Brown NM Sporer SM
Full Access

Introduction. During revision total hip arthroplasty, successful treatment of acetabular bone loss with an associated chronic pelvic discontinuity is dependent upon the remaining bone stock, stability of the construct, potential for biologic fixation, and healing of the discontinuity. Several techniques have been described for the treatment of this clinical entity; the authors recommend the use of acetabular distraction technique in conjunction with a jumbo cup with or without augments. The authors recently evaluated the minimum two-year follow-up of acetabular distraction technique for the treatment of chronic pelvic discontinuity. In the process, a chronic pelvic discontinuity classification was created based on the type of reconstruction required. The purpose of this study is to introduce the initial observations of this novel classification system. Methods. Patients from two academic institutions undergoing acetabular distraction for chronic pelvic discontinuity were identified between January 2002 and December 2013 with minimum 2-year follow-up. Radiographs at latest follow-up were compared to serial radiographs from the index surgery. Data was collected by chart review in accordance with institutional IRB protocol from both institutions. Results. A cohort of 32 patients had minimum 2-year (range, 2.1–13.3 years) follow-up. Mean patient age was 67 years (range, 44–86) and 87% were female. All patients had a chronic pelvic discontinuity with the following bone loss patterns: 7 (22%) type IIC, 5 (15%) type IIIA and 20 (63%) type IIIB. At time of final follow-up, radiographs demonstrated 22 of 32 patients (69%) had evidence of a healed discontinuity. Chronic Pelvic Discontinuity Classification. The classification mirrors the Paprosky classification and requires a more complex reconstruction with each progressive type. For the 20 patients with a type IIIB acetabular bone loss pattern, the new classification was applied. The distribution of classification types was as follows: type I 6 (30%); type II 5 (25%); type IIIA 4 (20%); type IIIB 5 (25%); and type IV 0. Overall, 70% (14) patients required the use of an augment for acetabular reconstruction. Conclusions. Acetabular distraction has been established as an effective method by which to treat chronic pelvic discontinuity. The new classification helps to determine the complexity of reconstruction required for each discontinuity, especially when assessing the most severe acetabular defects (Paprosky IIIB). The authors advocate acetabular distraction with a jumbo cup and modular porous metal augments as the preferred treatment for acetabular bone loss with associated chronic pelvic discontinuity. According to the new classification, the likelihood of utilizing augment(s) increases with severity of bone loss. Future studies are required to validate this new chronic pelvic discontinuity classification


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 903 - 908
1 Jul 2018
Eachempati KK Malhotra R Pichai S Reddy AVG Podhili Subramani AK Gautam D Bollavaram VR Sheth NP

Aims

The advent of trabecular metal (TM) augments has revolutionized the management of severe bone defects during acetabular reconstruction. The purpose of this study was to evaluate patients undergoing revision total hip arthroplasty (THA) with the use of TM augments for reconstruction of Paprosky IIIA and IIIB defects.

Patients and Methods

A retrospective study was conducted at four centres between August 2008 and January 2015. Patients treated with TM augments and TM shell for a Paprosky grade IIIA or IIIB defect, in the absence of pelvic discontinuity, and who underwent revision hip arthroplasty with the use of TM augments were included in the study. A total of 41 patients with minimum follow-up of two years were included and evaluated using intention-to-treat analysis.


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 909 - 914
1 Jul 2018
Sheth NP Melnic CM Brown N Sporer SM Paprosky WG

Aims

The aim of this study was to examine the results of the acetabular distraction technique in achieving implantation of a stable construct, obtaining biological fixation, and producing healing of chronic pelvic discontinuity at revision total hip arthroplasty.

Patients and Methods

We identified 32 patients treated between 2006 and 2013 who underwent acetabular revision for a chronic pelvic discontinuity using acetabular distraction, and who were radiographically evaluated at a mean of 62 months (25 to 160). Of these patients, 28 (87.5%) were female. The mean age at the time of revision was 67 years (44 to 86). The patients represented a continuous series drawn from two institutions that adhered to an identical operative technique.


The Bone & Joint Journal
Vol. 100-B, Issue 1_Supple_A | Pages 50 - 54
1 Jan 2018
Berend ME Berend KR Lombardi AV Cates H Faris P

Aims

Few reconstructive techniques are available for patients requiring complex acetabular revisions such as those involving Paprosky type 2C, 3A and 3B deficiencies and pelvic discontinuity. Our aim was to describe the development of the patient specific Triflange acetabular component for use in these patients, the surgical technique and mid-term results. We include a description of the pre-operative CT scanning, the construction of a model, operative planning, and surgical technique. All implants were coated with porous plasma spray and hydroxyapatite if desired.

Patients and Methods

A multicentre, retrospective review of 95 complex acetabular reconstructions in 94 patients was performed. A total of 61 (64.2%) were female. The mean age of the patients was 66 (38 to 85). The mean body mass index was 29 kg/m2 (18 to 51). Outcome was reported using the Harris Hip Score (HHS), complications, failures and survival.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 282 - 288
1 Apr 2018
Beckmann NA Bitsch RG Gondan M Schonhoff M Jaeger S

Objectives

In order to address acetabular defects, porous metal revision acetabular components and augments have been developed, which require fixation to each other. The fixation technique that results in the smallest relative movement between the components, as well as its influence on the primary stability with the host bone, have not previously been determined.

Methods

A total of 18 composite hemipelvises with a Paprosky IIB defect were implanted using a porous titanium 56 mm multihole acetabular component and 1 cm augment. Each acetabular component and augment was affixed to the bone using two screws, while the method of fixation between the acetabular component and augment varied for the three groups of six hemipelvises: group S, screw fixation only; group SC, screw plus cement fixation; group C, cement fixation only. The implanted hemipelvises were cyclically loaded to three different loading maxima (0.5 kN, 0.9 kN, and 1.8 kN).


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 36 - 42
1 Nov 2014
Sheth NP Melnic CM Paprosky WG

Acetabular bone loss is a challenging problem facing the revision total hip replacement surgeon. Reconstruction of the acetabulum depends on the presence of anterosuperior and posteroinferior pelvic column support for component fixation and stability. The Paprosky classification is most commonly used when determining the location and degree of acetabular bone loss. Augments serve the function of either providing primary construct stability or supplementary fixation.

When a pelvic discontinuity is encountered we advocate the use of an acetabular distraction technique with a jumbo cup and modular porous metal acetabular augments for the treatment of severe acetabular bone loss and associated chronic pelvic discontinuity.

Cite this article: Bone Joint J 2014;96-B(11 Suppl A):36–42.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 68 - 72
1 Jan 2016
Goodman GP Engh Jr CA

The custom triflange is a patient-specific implant for the treatment of severe bone loss in revision total hip arthroplasty (THA). Through a process of three-dimensional modelling and prototyping, a hydroxyapatite-coated component is created for acetabular reconstruction. There are seven level IV studies describing the clinical results of triflange components. The most common complications include dislocation and infection, although the rates of implant removal are low. Clinical results are promising given the challenging problem. We describe the design, manufacture and implantation process and review the clinical results, contrasting them to other methods of acetabular reconstruction in revision THA.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):68–72.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 158 - 162
1 Feb 2012
Sternheim A Backstein D Kuzyk PRT Goshua G Berkovich Y Safir O Gross AE

We report the use of porous metal acetabular revision shells in the treatment of contained bone loss. The outcomes of 53 patients with 50% acetabular bleeding host bone contact were compared with a control group of 49 patients with > 50% to 85% bleeding host bone contact. All patients were treated with the same type of trabecular metal acetabular revision shell. The mean age at revision was 62.4 years (42 to 80) and the mean follow-up of both groups was 72.4 months (60 to 102). Clinical, radiological and functional outcomes were assessed. There were four (7.5%) mechanical failures in the 50% host bone contact group and no failures in the > 50% host bone contact group (p = 0.068). Out of both groups combined there were four infections (3.9%) and five recurrent dislocations (4.9%) with a stable acetabular component construct that were revised to a constrained liner. Given the complexity of the reconstructive challenge, porous metal revision acetabular shells show acceptable failure rates at five to ten years’ follow-up in the setting of significant contained bone defects. This favourable outcome might be due to the improved initial stability achieved by a high coefficient of friction between the acetabular implant and the host bone, and the high porosity, which affords good bone ingrowth.