Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIII | Pages 9 - 9
1 Jul 2012
Russell D Fogg Q Mitchell CI Jones B
Full Access

The superficial anterior vasculature of the knee is variably described; most of our information comes from anatomical literature. Descriptions commonly emphasise medial-dominant genicular branches of the popliteal artery. Describing the relative contribution of medial and lateral vessels to the anastomotic network of the anterior knee may help provide grounds for selecting one of a number of popular incisions for arthrotomy. The aim of this study is to describe the relative contribution of vessels to anastomoses supplying the anterior knee. Cadaveric knees (n = 16) were used in two cohorts. The first cohort (n = 8) were injected at the popliteal artery with a single colour of latex, and then processed through a modified diaphanisation technique (chemical tissue clearance) before final dissection and analysis. This was repeated for the second cohort, but with initial dissection to identify potential source vessels at their origin. Each source vessel was injected with a different colour of latex. The dominant sources were determined in each specimen. The majority of the specimens (n = 13; 81%) demonstrated that an intramuscular branch though the vastus medialis muscle was the dominant vessel. Anastomoses were most common over the medial side of the knee, both superiorly and inferiorly (3-5 anastomoses in all cases). Anastomosis over the lateral knee was infrequent (1 anastomosis in 1 specimen). The results suggest that anterior vasculature of the knee is predominately medial in origin, but not from the genicular branches as previously described. This network of vessels found in the anterior knee is thought to be the main supply to the patella, extensor apparatus, anterior joint capsule and skin. Optimum placement of incision for arthrotomy is a subject of debate. Considering the main blood supply to the anterior knee may help in choosing a particular approach


The Bone & Joint Journal
Vol. 95-B, Issue 12 | Pages 1697 - 1702
1 Dec 2013
Maroto MD Scolaro JA Henley MB Dunbar RP

Bicondylar tibial plateau fractures result from high-energy injuries. Fractures of the tibial plateau can involve the tibial tubercle, which represents a disruption to the extensor mechanism and logically must be stabilised. The purpose of this study was to identify the incidence of an independent tibial tubercle fracture in bicondylar tibial plateau fractures, and to report management strategies and potential complications. We retrospectively reviewed a prospectively collected orthopaedic trauma database for the period January 2003 to December 2008, and identified 392 bicondylar fractures of the tibial plateau, in which 85 tibial tubercle fractures (21.6%) were identified in 84 patients. There were 60 men and 24 women in our study group, with a mean age of 45.4 years (18 to 71). In 84 fractures open reduction and internal fixation was undertaken, either with screws alone (23 patients) or with a plate and screws (61 patients). The remaining patient was treated non-operatively. In all, 52 fractures were available for clinical and radiological assessment at a mean follow-up of 58.5 weeks (24 to 94). All fractures of the tibial tubercle united, but 24 of 54 fractures (46%) required a secondary procedure for their tibial plateau fracture. Four patients reported pain arising from prominent tubercle plates and screws, which in one patient required removal. Tibial tubercle fractures occurred in over one-fifth of the bicondylar tibial plateau fractures in our series. Fixation is necessary and can be reliably performed with screws alone or with a screw and plate, which restores the extensor mechanism and facilitates early knee flexion.

Cite this article: Bone Joint J 2013;95-B:1697–1702.


The Bone & Joint Journal
Vol. 95-B, Issue 9 | Pages 1165 - 1171
1 Sep 2013
Arastu MH Kokke MC Duffy PJ Korley REC Buckley RE

Coronal plane fractures of the posterior femoral condyle, also known as Hoffa fractures, are rare. Lateral fractures are three times more common than medial fractures, although the reason for this is not clear. The exact mechanism of injury is likely to be a vertical shear force on the posterior femoral condyle with varying degrees of knee flexion. These fractures are commonly associated with high-energy trauma and are a diagnostic and surgical challenge. Hoffa fractures are often associated with inter- or supracondylar distal femoral fractures and CT scans are useful in delineating the coronal shear component, which can easily be missed. There are few recommendations in the literature regarding the surgical approach and methods of fixation that may be used for this injury. Non-operative treatment has been associated with poor outcomes. The goals of treatment are anatomical reduction of the articular surface with rigid, stable fixation to allow early mobilisation in order to restore function. A surgical approach that allows access to the posterior aspect of the femoral condyle is described and the use of postero-anterior lag screws with or without an additional buttress plate for fixation of these difficult fractures.

Cite this article: Bone Joint J 2013;95-B:1165–71.