Intraneural electrodes can be harnessed to control neural prosthetic devices in human amputees. However, in chronic implants we witness a gradual loss of device functionality and electrode isolation due to a nonspecific inflammatory response to the implanted material, called foreign body reaction (FBR). FBR may eventually lead to a fibrous encapsulation of the electrode surface. Poly(ethylene glycol) (PEG) is one of the most common low-fouling materials used to coat and protect electrode surfaces. Yet, PEG can easily undergo encapsulation and oxidative damage in long-term in vivo applications. Poly(sulfobetaine methacrylate) - poly(SBMA) - zwitterionic hydrogels may represent more promising alternatives to minimize the FBR due to their ultra-low fouling features. Here, we tested and compared the poly(SBMA) zwitterionic hydrogel coating with the PEG coating in reducing adhesion and activation of pro-inflammatory and pro-fibrotic cells to
Invasive intraneural electrodes implanted in peripheral nerves are neural prosthetic devices that are exploied to control advanced neural-interfaced prostheses in human amputees. One of the main issues to be faced in chronic implants is represented by the gradual loss of functionality of such intraneural interfaces due to an electrical impedance increase caused by the progressive formation of a fibrotic capsule around the electrodes, which is originally due to a nonspecific inflammatory response called foreign body reaction (FBR). In this in vitro work, we tested the biocompatibility and ultra-low fouling features of the synthetic coating - poly(ethylene glycol) (PEG) - compared to the organic polymer - zwitterionic sulfated poly(sulfobetaine methacrylate) (SBMA) hydrogel - to prevent or reduce the first steps of the FBR: plasma protein adsorption and cell adhesion to the interface. Synthesis and characterization of the SBMA hydrogel was done. Preliminary biocompatibility analysis of the zwitterionic hydrogel, using hydrogel-conditioned medium, showed no cytotoxicity at all vs. control. We seeded GFP-labelled human myofibroblasts on PEG- and SBMA hydrogel-coated