Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:

Results in patients undergoing total hip arthroplasty (THA) for femoral head osteonecrosis (ON) when compared with primary osteoarthritis (OA) are controversial. Different factors like age, THA type or surgical technique may affect outcome. We hypothesized that patients with ON had an increased revision rate compared with OA. We analysed clinical outcome, estimated the survival rate for revision surgery, and their possible risk factors, in two groups of patients. In this retrospective cohort analysis of our prospective database, we assessed 2464 primary THAs implanted between 1989 and 2017. Patients with OA were included in group 1, 2090 hips; and patients with ON in group 2, 374 hips. In group 2 there were more men (p<0.001), patients younger than 60 years old (p<0.001) and with greater physical activity (p<0.001). Patients with lumbar OA (p<0.001) and a radiological acetabular shape type B according to Dorr (p<0.001) were more frequent in group 1. Clinical outcome was assessed according to the Harris Hip Score and radiological analysis included postoperative acetabular and femoral component position and hip reconstruction. Kaplan-Meier survivorship analysis was used to estimate the cumulative probability of not having revision surgery for different reasons. Univariate and multivariate Cox regression models were used to assess risk factors for revision surgery. Clinical improvement was better in the ON at all intervals. There were 90 hips revised, 68 due to loosening or wear, 52 (2.5%) in group 1, and 16 (4.3%) in group 2. Overall, the survival rate for revision surgery for any cause at 22 years was 88.0 % (95% CI, 82-94) in group 1 and 84.1% (95% CI, 69 – 99) in group 2 (p=0.019). Multivariate regression analysis showed that hips with conventional polyethylene (PE), compared with highly-cross linked PEs or ceramic-on-ceramic bearings, (p=0.01, Hazard Ratio (HR): 2.12, 95% CI 1.15-3.92), and cups outside the Lewinnek´s safe zone had a higher risk for revision surgery (p<0.001, HR: 2.57, 95% CI 1.69-3.91). Modern highly-cross linked PEs and ceramic-on-ceramic bearings use, and a proper surgical technique improved revision rate in patients undergoing THA due to ON compared with OA


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 9 - 9
1 Apr 2018
Garcia-Rey E Carbonell R Cordero J Gomez-Barrena E
Full Access

Introduction. Durable bone fixation of uncemented porous-coated acetabular cups can be observed at a long-term, however, polyethylene (PE) wear and osteolysis may affect survivorship. Accurate wear measurements correlated with clinical data may offer unique research information of clinical interest about this highly debated issue. Objetive. We assessed the clinical and radiological outcome of a single uncemented total hip replacement (THR) system after twenty years analysing polyethylene wear and the appearance of osteolysis. Materials and Methods. 82 hips implanted between 1992 and 1995 were prospectively evaluated. The mean follow-up was 20.6 years (range, 18 to 23). A hemispherical porous-coated acetabular cup matched to a proximally hydroxyapatite-coated anatomic stem and a 28 mm standard PE liner, sterilised by gamma irradiation in air, was used in all hips. Radiological position and the possible appearance of loosening and osteolysis were recorded over time. Penetration of the prosthetic head into the liner was measured by the Roentgen Monographic Analysis (ROMAN) Tool at 6 weeks, 6 months, one year and yearly thereafter. Results. Six cups were revised due to wear and four due to late dislocation. All cups were radiographically well-fixed and all stems showed radiographic ingrowth. Six un-revised hips showed osteolysis on the acetabular side and two on the proximal femoral side. Creep at one year was 0.30 (±0.23) mm. Mean total femoral head penetration was 1.23 mm at 10 years, 1.52 mm at 15 years and 1.92 mm at 23 years. Overall mean wear was 0.12 (± 0.1) mm/year and 0.09 (±0.06) mm/year after the creep period. Mean wear was 0.08 (± 0.06) mm/year in hips without osteolysis and 0.14 (±0.03) mm/year in revised hips or with osteolysis (p<0.001). Conclusions. Although continued durable fixation can be observed with a porous-coated cups and a proximally hydroxyapatite-coated anatomic stem, true wear continues to increase at a constant rate over time. PE wear remains as the main reason for revision surgery and osteolysis in uncemented THR and does not stop after twenty years


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 52 - 52
1 Apr 2018
Rieker C
Full Access

Total Hip Arthroplasty (THA) is a well-established, cost-effective treatment for improving function and alleviating pain in patients who have disabling hip disease with excellent long-term results. Based on the excellent results, there is an ongoing trend for THA to be performed in younger and more active patients, having higher physical demands on their new total joints. Polyethylene (PE) wear and its biological consequences are one of the main causes of implant failure in THA. Macrophages phagocytise PE wear particles and this will result in osteolysis and loss of periprosthetic bone. The risk of these complications can be estimated in relation to the amount of volumetric wear based on two assumptions: that the number of PE particles dispersed in the peri-prosthetic tissues is controlled by the amount of PE wear; and that the development of osteolysis and the resulting aseptic loosening is triggered by these PE particles. Based on these assumptions, a model was developed to estimate the osteolysis-free life of a THA, depending on the Linear Wear Rate (LWR) and femoral head size of the PE bearing. A review of the literature was conducted to provide an estimate of the radiologic osteolysis threshold based on the volumetric wear of the PE bearing. This review demonstrates that this radiologic osteolysis threshold is approximated 670 mm3 for conventional PE. The osteolysis-free life of the THA was estimated by simply dividing this threshold volume by the annual Volumetric Wear Rate (VWR) of the bearing. The annual VWR is basically controlled by two parameters: (1) annual LWR and (2) head size, and was calculated by using published formulae. For 28 mm heads, following osteolysis-free life was determined in function of the annual LWR. LWR: 10 µm/y => 116.6 years / LWR: 25 µm/y => 46.6 years / LWR: 50 µm/y => 23.3 years / LWR: 100 µm/y => 11.6 years. For 40 mm heads, following osteolysis-free life was determined in function of the annual LWR. LWR: 10 µm/y => 57.1 years / LWR: 25 µm/y => 22.9 years / LWR: 50 µm/y => 11.4 years / LWR: 100 µm/y => 5.7 years. The osteolysis-free life determined by this model is in good agreement with the clinical results of PE bearings having a 28 mm head size and demonstrates that extreme low LWRs are mandatory to assure a descent osteolysis-free life for THA (PE bearings) using large heads, such as 40 mm. For such head sizes, small variations of the LWR may have large impacts on the osteolysis-free life of the THA


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 6 | Pages 915 - 919
1 Aug 2002
Bechtold JE Kubic V Søballe K

We have investigated whether the presence of polyethylene (PE) alone is sufficient to cause an aggressive periprosthetic tissue response, or whether certain mechanical interface conditions can allow bone to grow while in the presence of PE. An experimental implant was loaded in the presence and absence of particulate PE under stable and unstable conditions. Bone with a thin, discontinuous fibrous membrane formed in both groups of stable implants, either in the presence or absence of PE. By contrast, a continuous fibrous membrane consistently formed in both groups of unstable implants. The membrane consisted of loose fibrous connective tissue when PE was absent, and dense connective tissue with macrophages and a synovial lining when PE was present. In this model, if the interface was stable, the presence of PE was not sufficient to prevent the formation of bone or to produce a phagocytic tissue response. Only when the interface was unstable did a fibrous membrane form, and only then in the presence of PE


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 4 | Pages 593 - 597
1 May 2001
Kamikawa K Harada Y Nagata K Moriya H

Sterilisation by gamma irradiation in the presence of air causes free radicals generated in polyethylene (PE) to react with oxygen, which could lead to loss of physical properties and reduction in fatigue strength. Tissue retrieved from failed total hip replacements often has large quantities of particulate PE and most particles associated with peri-implant osteolysis are oxidised. Consequently, an understanding of the cellular responses of oxidised PE particles may lead to clarification of the pathogenesis of osteolysis and aseptic loosening. We have used the agarose system to demonstrate the differential effects of oxidised and non-oxidised PE particles on the release of proinflammatory products such as interleukin-1β (IL-1β), IL-6, and tumour necrosis factor-α (TNF-α) from monocytes/ macrophages (M/M). Oxidised PE particles were shown to stimulate human M/M to phagocytose and to release cytokines. Oxidation may alter the surface chemistry of the particles and enhance the response to specific membrane receptors on macrophages, such as scavenger-type receptors


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 3 | Pages 441 - 447
1 Apr 2001
Rahbek O Overgaard S Lind M Bendix K Bünger C Søballe K

We have studied the beneficial effects of a hydroxyapatite (HA) coating on the prevention of the migration of wear debris along the implant-bone interface. We implanted a loaded HA-coated implant and a non-coated grit-blasted titanium alloy (Ti) implant in each distal femoral condyle of eight Labrador dogs. The test implant was surrounded by a gap communicating with the joint space and allowing access of joint fluid to the implant-bone interface. We injected polyethylene (PE) particles into the right knee three weeks after surgery and repeated this weekly for the following five weeks. The left knee received sham injections. The animals were killed eight weeks after surgery. Specimens from the implant-bone interface were examined under plain and polarised light. Only a few particles were found around HA-coated implants, but around Ti implants there was a large amount of particles. HA-coated implants had approximately 35% bone ingrowth, whereas Ti implants had virtually no bone ingrowth and were surrounded by a fibrous membrane. Our findings suggest that HA coating of implants is able to inhibit peri-implant migration of PE particles by creating a seal of tightly-bonded bone on the surface of the implant


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 254 - 254
1 Jul 2014
Pettersson M Skjöldebrand C Engqvist H Persson C
Full Access

Summary Statement. The chemistry, amount, morphology, and size distribution of wear debris from silicon nitride coatings generated in the bearing surface can potentially reduce the negative biological response and increase the longevity compared to conventional materials in joint replacements. Introduction. Total hip implants have a high success rate at 15 years of implantation, but few survive over 25 years. At present, revisions are mostly due to aseptic loosening, believed to mainly be caused by the biological response to wear debris generated in the joint bearing. For the polymer liners the size of the wear debris determines the biological response, while for metal bearing surfaces a limitation is the metal ion release. When ceramics are used, the wear debris is in general small and mechanical factors may be the main cause for failure. A more recent, experimental alternative is to let the well-known metallic substrate serve as the soft, tough bulk, and additionally apply a hard and smooth ceramic coating. In this way a lower wear rate and reduced metal ion release could be obtained. Furthermore, the chosen composition, silicon nitride (SixNy), contains no detrimental ions, and silicon nitride debris has been shown to slowly dissolve in aqueous medium. Altogether, it can potentially increase the longevity of the implant. However, the debris from SixNy coatings has not yet been characterised. In this study, a wear model test was performed to generate wear debris from SixNy coatings. The debris was characterised using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) in combination with computational calculations. Methods. Silicon nitride coatings deposited on flat cobalt chromium alloy (ASTM F75) were worn in a reciprocating ball on disc setup in a 25% serum solution at 37°C against an alumina ball with a load of 1.5 N. Wear debris was separated using serum digestion with hydrochloric acid (ISO 17853:2011) and examined in SEM in combination with EDS. As reference polyethylene (PE) was used to verify that relevant particles sizes were achieved. The SEM images were processed using a modified MATLAB-script originating from Cervera Gontard et al. [1], identifying the particles and calculating their size. Results. Particles generated from SixNy coatings (n=62) a size distribution D50 [D10-D90] of 0.29 µm [0.16–0.69] and were round to oval in shape. The PE particles (n=70) had a size distribution of 0.29 µm [0.13–1.3], shaped similar to the SixNy particles or with a more elongated shape. Discussion and conclusions. PE wear debris has been reported to lie in the size range of nm up to several μm in vivo, with a large proportion within the critical size for macrophage activation (0.2 to 0.8 μm). The model test reports relevant sizes and shape of PE debris, confirming the validity of the method. Particles generated from the SixNy coatings showed a smaller size range than PE, however most particles were within the critical size range for biological activation. In conclusion, this model test could be used to generate what we believe are relevant sizes and shapes of PE and SixNy wear debris and to learn more at an early stage of prediction of wear debris. Further dissolution studies as well as studies on the in vitro and in vivo cell response to these types of particles will be performed. The authors thank the Swedish Foundation for Strategic Research (SSF) through MS2E and FP7 NMP project LifeLongJoints for financial support, as well as Linköping University for the coating facilities and expertise


Bone & Joint Research
Vol. 9, Issue 3 | Pages 146 - 151
1 Mar 2020
Waldstein W Koller U Springer B Kolbitsch P Brodner W Windhager R Lass R

Aims

Second-generation metal-on-metal (MoM) articulations in total hip arthroplasty (THA) were introduced in order to reduce wear-related complications. The current study reports on the serum cobalt levels and the clinical outcome at a minimum of 20 years following THA with a MoM (Metasul) or a ceramic-on-polyethylene (CoP) bearing.

Methods

The present study provides an update of a previously published prospective randomized controlled study, evaluating the serum cobalt levels of a consecutive cohort of 100 patients following THA with a MoM or a CoP articulation. A total of 31 patients were available for clinical and radiological follow-up examination. After exclusion of 11 patients because of other cobalt-containing implants, 20 patients (MoM (n = 11); CoP (n = 9)) with a mean age of 69 years (42 to 97) were analyzed. Serum cobalt levels were compared to serum cobalt levels five years out of surgery.