Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 19 - 19
1 Dec 2022
Belvedere C Ruggeri M Berti L Ortolani M Durante S Miceli M Leardini A
Full Access

Biomedical imaging is essential in the diagnosis of musculoskeletal pathologies and postoperative evaluations. In this context, Cone-Beam technology-based Computed Tomography (CBCT) can make important contributions in orthopaedics. CBCT relies on divergent cone X-rays on the whole field of view and a rotating source-detector element to generate three-dimensional (3D) volumes. For the lower limb, they can allow acquisitions under real loading conditions, taking the name Weight-Bearing CBCT (WB-CBCT). Assessments at the foot, ankle, knee, and at the upper limb, can benefit from it in situations where loading is critical to understanding the interactions between anatomical structures. The present study reports 4 recent applications using WB-CBCT in an orthopaedic centre. Patient scans by WB-CBCT were collected for examinations of the lower limb in monopodal standing position. An initial volumetric reconstruction is obtained, and the DICOM file is segmented to obtain 3D bone models. A reference frame is then established on each bone model by virtual landmark palpation or principal component analysis. Based on the variance of the model point cloud, this analysis automatically calculates longitudinal, vertical and mid-lateral axes. Using the defined references, absolute or relative orientations of the bones can be calculated in 3D. In 19 diabetic patients, 3D reconstructed bone models of the foot under load were combined with plantar pressure measurement. Significant correlations were found between bone orientations, heights above the ground, and pressure values, revealing anatomic areas potentially prone to ulceration. In 4 patients enrolled for total ankle arthroplasty, preoperative 3D reconstructions were used for prosthetic design customization, allowing prosthesis-bone mismatch to be minimized. 20 knees with femoral ligament reconstruction were acquired with WB-CBCT and standard CT (in unloading). Bone reconstructions were used to assess congruency angle and patellar tilt and TT-TG. The values obtained show differences between loading and unloading, questioning what has been observed so far. Twenty flat feet were scanned before and after Grice surgery. WB-CBCT allowed characterization of the deformity and bone realignment after surgery, demonstrating the complexity and multi-planarity of the pathology. These applications show how a more complete and realistic 3D geometric characterization of the of lower limb bones is now possible in loading using WB-CBCT. This allows for more accurate diagnoses, surgical planning, and postoperative evaluations, even by automatisms. Other applications are in progress


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 19 - 19
1 Jan 2017
Caravaggi P Avallone G Giangrande A Garibizzo G Leardini A
Full Access

In podiatric medicine, diagnosis of foot disorders is often merely based on tests of foot function in static conditions or on visual assessment of the patient's gait. There is a lack of tools for the analysis of foot type and for diagnosis of foot ailments. In fact, static footprints obtained via carbon paper imprint material have traditionally been used to determine the foot type or highlight foot regions presenting excessive plantar pressure, and the data currently available to podiatrists and orthotists on foot function during dynamic activities, such as walking or running, are scarce. The device presented in this paper aims to improve current foot diagnosis by providing an objective evaluation of foot function based on pedobarographic parameters recorded during walking. 23 healthy subjects (16 female, 7 males; age 35 ± 15 years; weight 65.3 ± 12.7; height 165 ± 7 cm) with different foot types volunteered in the study. Subjects' feet were visually inspected with a podoscope to assess the foot type. A tool, comprised of a 2304-sensor pressure plate (P-walk, BTS, Italy) and an ad-hoc software written in Matlab (The Mathworks, US), was used to estimate plantar foot morphology and functional parameters from plantar pressure data. Foot dimensions and arch-index, i.e. the ratio between midfoot and whole footprint area, were assessed against measurements obtained with a custom measurement rig and a laser-based foot scanner (iQube, Delcam, UK). The subjects were asked to walk along a 6m walkway instrumented with the pressure plate. In order to assess the tool capability to discriminate between the most typical walking patterns, each subject was asked to walk with the foot in forcibly pronated and supinated postures. Additionally, the pressure plate orientation was set to +15°, +30°, −15° and −30° with respect to the walkway main direction to assess the accuracy in measuring the foot progression angle (i.e. the angle between the foot axis and the direction of walk). At least 5 walking trials were recorded for each foot in each plate configuration and foot posture. The device allowed to estimate foot length with a maximum error of 5% and foot breadth with an error of 1%. As expected, the arch-index estimated by the device was the lowest in the cavus-feet group (0.12 ± 0.04) and the highest in the flat-feet group (0.29 ± 0.03). These values were between 4 – 10 % lower than the same measurements obtained with the foot scanner. The centre of pressure excursion index [1] was the lowest in the forcibly-pronated foot and the largest in the supinated foot. While the pressure plate used here has some limitations in terms of spatial resolution and sensor technology [2], the tool appears capable to provide information on foot morphology and foot function with satisfying accuracy. Patient's instrumental examination takes only few minutes and the data can be used by podiatrists to improve the diagnosis of foot ailments, and by orthotists to design or recommend the best orthotics to treat the foot condition