The etiology of the flexion contracture is related to recurrent effusions present in a knee with end-stage degenerative joint disease secondary to the associated inflammatory process. These recurrent effusions cause increased pressure in the knee causing pain and discomfort. Patients will always seek a position of comfort, which is slight flexion. Flexion decreases the painful stimulus by reducing pressure in the knee and relaxing the posterior capsule. Unfortunately, this self-perpetuating process leads to a greater degree of contracture as the disease progresses. Furthermore, patients rarely maintain the knee in full extension. Even during the gait cycle the knee is slightly flexed. As their disease progresses, patients limit their ambulation and are more frequently in a seated position. Patients often report sleeping with a pillow under their knee or in the fetal position. All of these activities increase flexion contracture deformity. Patients with excessive deformity >40 degrees should be counseled regarding procedural complexity and that increasing constraint may be required. Patients are seen preoperatively by a
The etiology of the flexion contracture is related to recurrent effusions present in a knee with end-stage degenerative joint disease secondary to the associated inflammatory process. These recurrent effusions cause increased pressure in the knee causing pain and discomfort. Patients will always seek a position of comfort, which is slight flexion. Flexion decreases the painful stimulus by reducing pressure in the knee and relaxing the posterior capsule. Unfortunately, this self-perpetuating process leads to a greater degree of contracture as the disease progresses. Furthermore, patients rarely maintain the knee in full extension. Even during the gait cycle the knee is slightly flexed. As their disease progresses, patients limit their ambulation and are more frequently in a seated position. Patients often report sleeping with a pillow under their knee or in the fetal position. All of these activities increase flexion contracture deformity. Patients with excessive deformity >40 degrees should be counseled regarding procedural complexity and that increasing constraint may be required. Patients are seen pre-operatively by a
Introduction. Traditional Total Knee Arthpolasty (TKA) replaces all 3 compartments of the knee for patients diagnosed with OA. There might be functional benefit to replacing only damaged compartments, and retaining the normal ligamentous structures. There is a long history of performing multi-compartment arthroplasty with discrete components. Laskin reported in 1976 that good pain relief and acceptable clinical results were achieved at two years in patients with bi-unicondylar knee replacement [Laskin 1976]. Other authors also have reported on bi-unicompartmental knee arthroplasty achieving successful clinical outcomes [Stockley 1990; Confalonieri 2005]. Banks et al. reported that kinematics of bi-unicompartmental arthroplasties during gait demonstrated some of the basic features of normal knee kinematics [Banks 2005]. These reports suggest that a modular approach to resurfacing the knee can be successful and achieve satisfactory clinical and functional results. Objective. The primary objective of this study is to compare the functional outcomes of three patient groups treated for osteoarthritis. Methods. Subjects received either a modular, multicompartment knee arthroplasty (MKA) implanted with robotic-arm assistance(MAKO Surgical Corp., Fort Lauderdale, FL), a computer assisted TKA (TKA CAS) or a TKA implanted using traditional manual instrumentation (TKA T). Patients that were eligible to receive a TKA were randomly selected to receive computer assisted or traditional surgical technique and blinded to the type of TKA surgical technique utilized. We report post-operative functional outcomes including Range of Motion (ROM), Timed-up and go(TUG), and Quad strength at time intervals of 2 weeks, 6 weeks, 3 months and 6 months. The TUG test is a validated measure of patient mobility where a patient is asked to stand up from a chair, walk three meters turn around and sit back down [Boonstra, 2008]. The Quad strength assessment is measured with a hand held dynamometer (Lafayette Instruments, Lafayette, IN) while patient was seated with leg at 90 degrees flexion. The patient is asked to extend their knee while a
The primary purpose of this study was to assess whether patients presenting with clinical graft laxity following primary anatomic anterior cruciate ligament (ACL) reconstruction using hamstring autograft reported a significant difference in disease-specific quality-of-life (QOL) as measured by the ACL-QOL questionnaire. Clinical ACL graft laxity was assessed in a cohort of 1134/1436 (79%) of eligible patients using the Lachman and Pivot-shift tests pre-operatively and at 12- and 24-months following ACL reconstruction. Post-operative ACL laxity was assessed by an orthopaedic surgeon and a
Background. Total Knee Arthroplasty (TKA) provides patients with significant improvements in quality of life. Subjective patient reported outcome measures (PROMs) are traditionally used to measure preoperative functional status and postoperative outcomes. However, there are limitations to PROMs. In particular, they provide virtually no functional information in the first 3 weeks after surgery, which could be used to guide the patient's recovery. Newly available wearable electronic sensors make it possible to: 1) measure important functional outcomes following TKA; 2) guide the patient's physical therapy (PT); and 3) provide real-time functional and clinical information to the provider. Compliance with PT after TKA is a challenge. Patients cite time, transportation, and cost as deterrents to PT appointments. However, an intensive PT program is essential in TKA. Surface sensor devices may be able to increase PT compliance by guiding patients through exercises at home. Additionally, these devices can transmit PT progress in real-time to the providers, allowing them to monitor and assist the patient's recovery. Our study investigates the feasibility of using a surface sensor device (TracPatch™) on patients following TKA. We sought to answer the following questions: 1) Will patients tolerate the device; 2) Will patients comply with device instructions; 3) Will patients be able to use the smart phone application; 4) Will the device collect, transmit, and store data as it was designed? We believe these fundamental questions must be answered as we enter the era of personal sensor-measured functional outcomes. Methods. 20 patients undergoing primary, unilateral TKA were enrolled in this IRB approved study. At the pre-surgical visit, patients were given instructions for the device and smart phone application. Each patient used the device in the week prior to surgery, and data was collected. The device was again applied in the operating room. For 3 weeks post-operatively, the device collected functional data, along with WOMAC, OKS, KSS, PROMIS, and VAS pain scores. A satisfaction survey was collected on the device. Results. The study results emphasize the importance of clear device instructions. Using the sensor and phone application prior to surgery was very helpful. The device was surprisingly well tolerated. Older patients were able to use the device without significant difficulty. Virtually all patients found the device helpful and, often fun.
The aim of this study was to assess the incidence, management and survival of unstable pelvic ring injuries in patient aged 65 years or older. Prospectively kept data was analysed from April 2008 to October 2016. Information regarding the mechanism, fracture type, associated injuries, treatment and complications of the treatment were collected. Annual incidence was calculated and a Kaplan Meier survival analysis for carried out at 30 days, 1 year and 5 years. 404 patient records were available. 125 were 65 years or older (60 males and 65 females). 24 (19%) patients required surgical stabilisation to permit mobilisation the remaining 101 patients, treated conservatively were mobilised with immediate weight-bearing under the supervision of a
INTRODUCTION. Physical therapy(PT) is an integral component in the management of musculoskeletal conditions. On the other hand, there have been few reports exclusively dedicated to studying PT interventions on the same day of total hip arthroplasty(THA). In this study, we investigate the role of rehabilitation in the early postoperative period on length of stay (LOS), total medical cost, and physical recovery following total hip arthroplasty. METHODS. A prospective cohort study was carried out 104 consecutive patients who underwent 107 primary THA performed by two surgeons. Data were gathered on all patients who underwent operative management from June2016 to June 2017. Institutional review board approval was obtained before performing this study. Patient demographic, physical, and clinical dates were collected for all patients, including age, gender, body mass index (BMI), diagnosis, Japan Orthopedic Association (JOA) hip score, Japanese Orthopedic Association Hip-Disease Evaluation Questionnaire (JHEQ) score, 3min walk test, and Timed up and go (TUG) test. The patient population consisted of 5men and 99women, with an average age of 66.0 years (range, 50–84 years). There were no statistically significant differences between patients who did and did not receive PT with regard to demographic, medical, and surgical data, including gender, age, BMI, JOA hip score, JHEQ score, preoperative 3min walk test, preoperative TUG test(Table 1). All patients underwent direct anterior approach THA through navigation system. Postoperative day (POD) 0 was defined as the same day of surgery. There were no standardized criteria by which patients were selected for participation in rehabilitation with
To progress to a same day surgery program for arthroplasty, it is important that we examine and resolve the issues of why patients stay in the hospital. The number one reason is fear and anxiety of the unknown and of surgical pain. The need for hospital stay is also related to risk arising from comorbidities and medical complications. Patients also need an extended stay to manage the side effects of our treatment, including after effects of narcotics and anaesthesia, blood loss, and surgical trauma. The process begins pre-operatively with an appropriate orthopaedic assessment of the patient and determination of the need for surgery. The orthopaedic team must motivate the patient, and ensure that the expectations of the patient, family and surgeon are aligned. In conjunction with our affiliated hospitalist group that performs almost all pre-admission testing, we have established guidelines for patient selection for outpatient arthroplasty. The outpatient surgical candidate must have failed conservative measures, must have appropriate insurance coverage, and must be functionally independent. Previous or ongoing comorbidities that cannot be optimised for safe outpatient care may include: congestive heart failure, or valve disease; chronic obstructive pulmonary disease, or home use of supplemental oxygen; untreated obstructive sleep apnea with a BMI >40 kg/m2; hemodialysis or severely elevated serum creatinine; anemia with hemoglobin <13.0 g/dl; cerebrovascular accident or history of delirium or dementia; and solid organ transplant. Pre-arthroplasty rehabilitation prepares the patient for peri-operative protocols. Patients meet with a
To progress to a same day surgery program for arthroplasty, it is important that we examine and resolve the issues of why patients stay in the hospital. The number one reason is fear and anxiety for the unknown and for surgical pain. The need for hospital stay is also related to risk arising from comorbidities and medical complications. Patients also need an extended stay to manage the side effects of our treatment, including after-effects of narcotics and anesthesia, blood loss, and surgical trauma. The process begins pre-operatively with an appropriate orthopaedic assessment of the patient and determination of the need for surgery. The orthopaedic team must motivate the patient, and ensure that the expectations of the patient, family and surgeon are aligned. In conjunction with our affiliated hospitalist group that performs almost all pre-admission testing, we have established guidelines for patient selection for outpatient arthroplasty. The outpatient surgical candidate must have failed conservative measures, must have appropriate insurance coverage, and must be functionally independent. Previous or ongoing comorbidities that contraindicate the outpatient setting include: cardiac – prior revascularization, congestive heart failure, or valve disease; pulmonary – chronic obstructive pulmonary disease, or home use of supplemental oxygen; untreated obstructive sleep apnea – BMI >40 kg/m2; renal disease – hemodialysis or severely elevated serum creatinine; gastrointestinal – history or post-operative ileus or chronic hepatic disease; genitourinary – history of urinary retention or severe benign prostatic hyperplasia; hematologic – chronic Coumadin use, coagulopathy, anemia with hemoglobin <13.0 g/dl, or thrombophilia; neurological – history of cerebrovascular accident or history of delirium or dementia; solid organ transplant. Pre-arthroplasty rehabilitation prepares the patient for peri-operative protocols. Patients meet with a