Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
The Bone & Joint Journal
Vol. 98-B, Issue 10 | Pages 1342 - 1346
1 Oct 2016
Spencer-Gardner L Pierrepont J Topham M Baré J McMahon S Shimmin AJ

Aims

Accurate placement of the acetabular component during total hip arthroplasty (THA) is an important factor in the success of the procedure. However, the reported accuracy varies greatly and is dependent upon whether free hand or navigated techniques are used. The aim of this study was to assess the accuracy of an instrument system that incorporates 3D printed, patient-specific guides designed to optimise the placement of the acetabular component.

Patients and Methods

A total of 100 consecutive patients were prospectively enrolled and the accuracy of placement of the acetabular component was measured using post-operative CT scans.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_5 | Pages 24 - 24
1 Jul 2020
Di Laura A Henckel J Belzunce M Hothi H Hart A
Full Access

Introduction. The achieved anteversion of uncemented stems is to a large extent limited by the internal anatomy of the bone. A better understanding of this has recently become an unmet need because of the increased use of uncemented stems. We aimed to assess plan compliance in six degrees of freedom to evaluate the accuracy of PSI and guides for stem positioning in primary THAs. Materials and Methods. We prospectively collected 3D plans generated from preoperative CTs of 30 consecutive THAs (17 left and 13 right hips), in 29 patients with OA, consisting of 16 males and 13 females (median age 68 years, range 46–83 years). A single CT-based planning system and cementless type of implant were used. Post operatively, all patients had a CT scan which was reconstructed using state-of-the-art software solution: the plan and CT reconstruction models were. Outcome measures: 1) discrepancy between planned and achieved stem orientation angles Fig.2&3; 2) clinical outcome. Results. 1) The mean (±SD) discrepancy was low for: Varus-valgus −1.1 ± 1.4 deg (IQR −2.2 – 0.3 deg); Anterior-posterior 0.1 ± 1.6 deg (IQR −0.7 – 1.3 deg). The discrepancy was higher for femoral version −1.4 ± 8.2 deg (IQR −8.3 – 7.2 deg). 3D-CT planning correctly predicted sizes in 93% of the femoral components. 2) There was no intra-operative fracture, no case showed evidence of early periprosthetic osseous injury. Discussion. Surgeons and engineers should be cautious with their expectation of achieving the planned femoral stem version of an uncemented femoral stem from the pre-operative 3D-CT plan. Conclusion. This is the first study to 3D-mensionally evaluate 3D-printed patient-specific instrumentation and guides for achieved femoral stem component orientation vis-à-vis to the plan. The tools allow accurate implant orientation, however there is still potential for improvement. For any figures or tables, please contact the authors directly


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 862 - 866
1 Jul 2018
Darrith B Bell JA Culvern C Della Valle CJ

Aims

Accurate placement of the acetabular component is essential in total hip arthroplasty (THA). The purpose of this study was to determine if the ability to achieve inclination of the acetabular component within the ‘safe-zone’ of 30° to 50° could be improved with the use of an inclinometer.

Patients and Methods

We reviewed 167 primary THAs performed by a single surgeon over a period of 14 months. Procedures were performed at two institutions: an inpatient hospital, where an inclinometer was used (inclinometer group); and an ambulatory centre, where an inclinometer was not used as it could not be adequately sterilized (control group). We excluded 47 patients with a body mass index (BMI) of > 40 kg/m2, age of > 68 years, or a surgical indication other than osteoarthritis whose treatment could not be undertaken in the ambulatory centre. There were thus 120 patients in the study, 68 in the inclinometer group and 52 in the control group. The inclination angles of the acetabular component were measured from de-identified plain radiographs by two blinded investigators who were not involved in the surgery. The effect of the use of the inclinometer on the inclination angle was determined using multivariate regression analysis.


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 780 - 785
1 Jun 2015
Baauw M van Hellemondt GG van Hooff ML Spruit M

We evaluated the accuracy with which a custom-made acetabular component could be positioned at revision arthroplasty of the hip in patients with a Paprosky type 3 acetabular defect.

A total of 16 patients with a Paprosky type 3 defect underwent revision surgery using a custom-made trabecular titanium implant. There were four men and 12 women with a median age of 67 years (48 to 79). The planned inclination (INCL), anteversion (AV), rotation and centre of rotation (COR) of the implant were compared with the post-operative position using CT scans.

A total of seven implants were malpositioned in one or more parameters: one with respect to INCL, three with respect to AV, four with respect to rotation and five with respect to the COR.

To the best of our knowledge, this is the first study in which CT data acquired for the pre-operative planning of a custom-made revision acetabular implant have been compared with CT data on the post-operative position. The results are encouraging.

Cite this article: Bone Joint J 2015; 97-B:780–5.