Charcot neuroarthropathy is a rare but serious complication of diabetes, causing progressive destruction of the bones and joints of the foot leading to deformity, altered biomechanics and an increased risk of ulceration. Management is complicated by a lack of consensus on diagnostic criteria and an incomplete understanding of the
Aims. The Chopart joint complex is a joint between the midfoot and hindfoot. The static and dynamic support system of the joint is critical for maintaining the medial longitudinal arch of the foot. Any dysfunction leads to progressive collapsing flatfoot deformity (PCFD). Often, the tibialis posterior is the primary cause; however, contrary views have also been expressed. The present investigation intends to explore the comprehensive anatomy of the support system of the Chopart joint complex to gain insight into the cause of PCFD. Methods. The study was conducted on 40 adult embalmed cadaveric lower limbs. Chopart joint complexes were dissected, and the structures supporting the joint inferiorly were observed and noted. Results. The articulating bones exhibit features like a cuboid shelf and navicular beak, which appear to offer inferior support to the joint. The expanse of the spring ligament complex is more medial than inferior, while the superomedial part is more extensive than the intermediate and inferoplantar parts. The spring ligament is reinforced by the tendons in the superomedial part (the main tendon of tibialis posterior), the inferomedial part (the plantar slip of tibialis posterior), and the master knot of Henry positioned just inferior to the gap between the inferomedial and inferoplantar bundles. Conclusion. This study highlights that the medial aspect of the talonavicular articulation has more extensive reinforcement in the form of superomedial part of spring ligament and tibialis posterior tendon. The findings are expected to prompt further research in weightbearing settings on the
Aims. The
Introduction. Periprosthetic cyst formation following ankle replacement, requiring revision surgery, has previously been reported. The exact
Neuropathic changes in the foot are common with
a prevalence of approximately 1%. The diagnosis of neuropathic arthropathy
is often delayed in diabetic patients with harmful consequences
including amputation. The appropriate diagnosis and treatment can
avoid an extensive programme of treatment with significant morbidity
for the patient, high costs and delayed surgery. The pathogenesis
of a Charcot foot involves repetitive micro-trauma in a foot with impaired
sensation and neurovascular changes caused by pathological innervation
of the blood vessels. In most cases, changes are due to a combination
of both pathophysiological factors. The Charcot foot is triggered
by a combination of mechanical, vascular and biological factors
which can lead to late diagnosis and incorrect treatment and eventually
to destruction of the foot. This review aims to raise awareness of the diagnosis of the Charcot
foot (diabetic neuropathic osteoarthropathy and the differential
diagnosis, erysipelas, peripheral arterial occlusive disease) and
describe the ways in which the diagnosis may be made. The clinical
diagnostic pathways based on different classifications are presented. Cite this article:
Pigmented villonodular synovitis (PVNS) is a
rare benign disease of the synovium of joints and tendon sheaths, which
may be locally aggressive. We present 18 patients with diffuse-type
PVNS of the foot and ankle followed for a mean of 5.1 years (2 to
11.8). There were seven men and 11 women, with a mean age of 42
years (18 to 73). A total of 13 patients underwent open or arthroscopic
synovectomy, without post-operative radiotherapy. One had surgery
at the referring unit before presentation with residual tibiotalar
PVNS. The four patients who were managed non-operatively remain
symptomatically controlled and under clinical and radiological surveillance.
At final follow-up the mean Musculoskeletal Tumour Society score
was 93.8% (95% confidence interval (CI) 85 to 100), the mean Toronto
Extremity Salvage Score was 92 (95% CI 82 to 100) and the mean American
Academy of Orthopaedic Surgeons foot and ankle score was 89 (95%
CI 79 to 100). The lesion in the patient with residual PVNS resolved radiologically
without further intervention six years after surgery. Targeted synovectomy
without adjuvant radiotherapy can result in excellent outcomes,
without recurrence. Asymptomatic patients can be successfully managed
non-operatively. This is the first series to report clinical outcome
scores for patients with diffuse-type PVNS of the foot and ankle. Cite this article:
Charcot osteoarthropathy of the foot is a chronic and progressive disease of bone and joint associated with a risk of amputation. The main problems encountered in this process are osteopenia, fragmentation of the bones of the foot and ankle, joint subluxation or even dislocation, ulceration of the skin and the development of deep sepsis. We report our experience of a series of 20 patients with Charcot osteoarthropathy of the foot and ankle treated with an Ilizarov external fixator. The mean age of the group was 30 years (21 to 50). Diabetes mellitus was the underlying cause in 18 patients. Five had chronic ulcers involving the foot and ankle. Each patient had an open lengthening of the tendo Achillis with excision of all necrotic and loose bone from the ankle, subtalar and midtarsal joints when needed. The resulting defect was packed with corticocancellous bone graft harvested from the iliac crest and an Ilizarov external fixator was applied. Arthrodesis was achieved after a mean of 18 weeks (15 to 20), with healing of the skin ulcers. Pin track infection was not uncommon, but no frame had to be removed before the arthrodesis was sound. Every patient was able to resume wearing regular shoes after a mean of 26.5 weeks (20 to 45).
Between 2002 and 2008, 130 consecutive ankles were replaced with an hydroxyapatite (HA) and titanium-HA-coated Ankle Evolutive System total ankle prosthesis. Plain radiographs were analysed by two independent observers. Osteolytic lesions were classified by their size and location, with cavities >
10 mm in diameter considered to be ‘marked’. CT scanning was undertaken in all patients with marked osteolysis seen on the plain radiographs. Osteolytic lesions were seen on the plain films in 48 (37%) and marked lesions in 27 (21%) ankles. The risk for osteolysis was found to be 3.1 (95% confidence interval 1.6 to 5.9) times higher with implants with Ti-HA porous coating. Care should be taken with ankle arthroplasty until more is known about the reasons for these severe osteolyses.