Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 78 - 78
1 Mar 2021
Kandhari V Grasso S Twiggs J
Full Access

Abstract. Background. Accurate analysis of the patellar resurfacing is essential to better understand the etiology of patella-femoral problems and dissatisfaction following total knee arthroplasty (TKA). In the current published literature patellar resurfacing is analysed using 2D radiographs. With use of radiographs there is potential for error due to differences in limb positioning, projection, anatomic variability and difficulties in appreciating the cement-bone interface. So, we have developed a CT Scan based 3D modelled technique for accurate evaluation of patellar resurfacing. Methods. This technique for analyses of patellar resurfacing is based on the pre-operative and pos-operative CT Scan data of the patients who underwent TKA with patellar resurfacing. In the first step, accurately landmarked 3D models of pre-op patellae were created from pre-operative CT Scan data in ScanIP software. This model was imported in Geomagic design software and computational model of post-op patella was created. This was further analysed to determine the inclination of the patellar resection plane, patellar button positioning and articular volumetric restoration of the patella. Reliability and reproducibility of the technique was tested by comparing 3 sets of 10 measurements done by 2 independent investigators on 30 computational models of patellae derived from the data of randomly chosen 30 TKA patients. Results. The developed technique for analyses of patellar resurfacing is reliable and reproducible. The intraclass correlation co-efficient was >0.90 for the 10 measurements performed by two investigators. Conclusions. This technique can be used by surgeons and engineers for accurate analysis of the patellar resurfacing especially in patients with persistent patello-femoral problems after TKA. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 39 - 39
17 Nov 2023
FARHAN-ALANIE M Gallacher D Kozdryk J Craig P Griffin J Mason J Wall P Wilkinson M Metcalfe A Foguet P
Full Access

Abstract. Introduction. Component mal-positioning in total hip replacement (THR) and total knee replacement (TKR) can increase the risk of revision for various reasons. Compared to conventional surgery, relatively improved accuracy of implant positioning can be achieved using computer assisted technologies including navigation, patient-specific jigs, and robotic systems. However, it is not known whether application of these technologies has improved prosthesis survival in the real-world. This study aimed to compare risk of revision for all-causes following primary THR and TKR, and revision for dislocation following primary THR performed using computer assisted technologies compared to conventional technique. Methods. We performed an observational study using National Joint Registry data. All adult patients undergoing primary THR and TKR for osteoarthritis between 01/04/2003 to 31/12/2020 were eligible. Patients who received metal-on-metal bearing THR were excluded. We generated propensity score weights, using Sturmer weight trimming, based on: age, gender, ASA grade, side, operation funding, year of surgery, approach, and fixation. Specific additional variables included position and bearing for THR and patellar resurfacing for TKR. For THR, effective sample sizes and duration of follow up for conventional versus computer-guided and robotic-assisted analyses were 9,379 and 10,600 procedures, and approximately 18 and 4 years, respectively. For TKR, effective sample sizes and durations of follow up for conventional versus computer-guided, patient-specific jigs, and robotic-assisted groups were 92,579 procedures over 18 years, 11,665 procedures over 8 years, and 644 procedures over 3 years, respectively. Outcomes were assessed using Kaplan-Meier analysis and expressed using hazard ratios (HR) and 95% confidence intervals (CI). Results. For THR, analysis comparing computer-guided versus conventional technique demonstrated HR of 0.771 (95%CI 0.573–1.036) p=0.085, and 0.594 (95%CI 0.297–1.190) p=0.142, for revision for all-causes and dislocation, respectively. When comparing robotic-assisted versus conventional technique, HR for revision for all-causes was 0.480 (95%CI 0.067 –3.452) p=0.466. For TKR, compared to conventional surgery, HR for all-cause revision for procedures performed using computer guidance and patient-specific jigs were 0.967 (95% CI 0.888–1.052) p=0.430, and 0.937 (95% CI 0.708–1.241) p=0.65, respectively. HR for analysis comparing robotic-assisted versus conventional technique was 2.0940 (0.2423, 18.0995) p = 0.50. Conclusions. This is the largest study investigating this topic utilising propensity score analysis methods. We did not find a statistically significant difference in revision for all-causes and dislocation although these analyses are underpowered to detect smaller differences in effect size between groups. Additional comparison for revision for dislocation between robotic-assisted versus conventionally performed THR was not performed as this is a subset of revision for all-causes and wide confidence intervals were already observed for that analysis. It is also important to mention this NJR analysis study is of an observational study design which has inherent limitations. Nonetheless, this is the most feasible study design to answer this research question requiring use of a large data set due to revision being a rare outcome. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 83 - 83
1 Mar 2021
McAleese T Quinn M Graves S Clark G
Full Access

Abstract. Objectives. Patella resurfacing in primary total knee arthroplasty (TKA) remains a contentious issue. Australian rates of patellar resurfacing are 66.6%, significantly higher compared to UK rates of 8–15% and Swedish rates of 2%. Resurfacing has gained popularity in Australia since registry data has shown decreased revision rates with no increase in patellar component related complications. We present for discussion an analysis of 113,694 total knee arthroplasties using commonly implanted prostheses in the UK. Methods. We included all TKA's since the Australian register's conception on 01/09/1999 for a primary diagnosis of osteoarthritis involving the use of either the Triathlon or Duracon implant with and without patellar components. The primary outcome of the study was time to revision for Triathlon's resurfaced and non-resurfaced prosthesis compared to the Duracon's equivalent data. We also analysed the reasons for revision between the 4 groups, type of revision and complication rates. We then compared minimally stabilised and posterior stabilised prostheses. Results. The cumulative revision rate for Triathlon prostheses with resurfacing after 12 years was 3.2% (95% CI, 2.9% to 3.6%) compared to 5.6% (95% CI, 5.0% to 6.2%) without resurfacing. Duracon's equivalent data was 6.3% with resurfacing and 5.9% without resurfacing. Triathlon prosthesis with resurfacing have much lower rates of revision due to loosening, patellofemoral pain, patellar erosion compared to unresurfaced Triathlon prostheses. Conclusion. Triathlon with re-surfacing has lower revision rates regardless of age or BMI. Previous concerns regarding patellofemoral loosening, tibial wear, maltracking relate to Duracon only, indicating the importance of implant specific studies. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 108 - 108
1 Mar 2021
Ozcan O Yesil M Boya H Erginoglu SE
Full Access

Shortening of patellar tendon after total knee arthroplasty (TKA) was previously reported by several studies. Its etiology still remains controversial. Patellar tendon shortening, a direct cause of patella baja, has a dramatic negative impact in terms of clinical outcomes after TKA. Main objective of this study is to assess the feasibility of utilizing a different technique with Ultrasound that is easy to use, cost-effective and able to eliminate the problem of differential magnification occurring in other techniques which count on standard x-rays and to establish the correlation between clinical outcomes and changes in patellar tendon length and thickness after TKA. The study was designed as prospective cohort and, after a minimum of 4-year-follow up period, 47 knees of 24 patients who had undergone primary TKA without patellar resurfacing were included in the study. All patients were scored with Kujala and HSS scores and all patellar tendons were evaluated with USG regarding their length and thickness. We used conventional grey-scale ultrasound imaging (US) to determine any changes in patellar tendon morphology. All cases were evaluated by the same radiologist. The patellar tendon was examined with the knee in 30° flexion. The flexion angle helped to stretch the extensor mechanism and avoid anisotropy (concavity) of the patellar tendon. The transducer was placed along the long axis of the tendon. The patellar tendon was initially examined in the longitudinal plane in order to measure the total length. Then, total length was divided into three parts and sagittal thickness was calculated at the proximal, median, and distal thirds of the patellar tendon. Both the length and thickness of the tendon were measured before surgery and at the 4th year of follow-up. Of the 47 knees that were included in our study, the mean pre-operative and postoperative length of the patellar tendon was 40.78±6.15 mm and 35.93±4.52 mm. Our results suggested significant shortening of the patellar tendon after primary TKA surgery (p<0.05). Intergroup analysis suggested that reduced sagittal thickness in the proximal third of the tendon was more strongly correlated with an increase in functional outcomes (p<0.05). Our results suggested no significant difference in clinical outcome scores between patients with increased or decreased length of the patellar tendon after TKA (p>0.05). We suggest that determining morphologic changes in sagittal thickness as well as length is important in explaining some of the ambiguous causes of anterior knee pain and impaired clinical outcomes after TKA. More accurate documentation of morphologic changes in the patellar tendon after TKA will certainly help to develop new techniques by surgeons or avoid some existing routines that may harm the tendon. USG is a feasible method for evaluating patellar tendon morphology after TKA but more future studies are needed


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 52 - 52
1 Apr 2018
Huish E Coury J Ummel J Casey J Cohen J
Full Access

Introduction. Management of the patellofemoral surface in total knee arthroplasty (TKA) remains a topic of debate. Incidence of anterior knee pain and incidence of repeat operation have been the focus of several recent meta-analyses, however there is little recent data regarding patients” subjective ability to kneel effectively after TKA. The purpose of this study was to compare patient reported outcomes, including reported ability to kneel, after total knee arthroplasty with and without patellar resurfacing. Methods. Retrospective chart review of 84 consecutive patients who underwent primary TKA with patella resurfacing (56 knees) or without patella resurfacing (28 knees) having a minimum of 2.5 year follow up was performed. Oxford knee scores (OKS), visual analog pain scores (VAS), and questionnaires regarding ability to kneel were evaluated from both groups. Inability to kneel was defined as patients reporting inability or extreme difficulty with kneeling. Shapiro-Wilk test was used to determine normality of data. Mann Whitney U test was used to compare the OKS and VAS between groups. Chi square test was used to compare kneeling ability between groups. Statistical analysis was performed with SPSS version 23 (IBM, Aramonk, NY). Results. The 84 patients included 26 males and 58 females with average age 66.5 (range 46–91). Average follow up was 51 months (range 30–85). There was no significant difference in the percentage of female patients (64% vs 79%), age (67.8 vs 63.8), or reoperation rate (4% vs 7%) between the resurfaced and non-resurfaced groups. There was significantly longer follow up in the non-resurfaced group (57 vs 48 months). There was no statistically significant difference between the resurfacing and non-resurfacing group in terms of OKS (39 vs 38) or VAS (2.5 vs 3.0). However, those patients who did not have their patellofemoral joint resurfaced were more likely to report ability to kneel when compared to the resurfacing group (64% vs 39%, p=0.035). Kneeling ability was not correlated with duration of follow up, patient age or VAS. Kneeling ability was higher in female patients (57%) than males (27%), p=0.017. Discussion. There is concern for increased anterior knee pain and reoperation in patients whose patellae are not resurfaced. However, their failure to imnprove after revision to a resurfaced patella has left some room for depate as to whether or not the lack of resurfacing is the cause of their problems. This study did not show any increase in knee pain or reoperation between groups. There was an increased subjective ability to kneel in paients whose patellae were not resurfaced. This may have implications for the subset of paeitnts whose work or hobbies may require kneeling. There have been previous reports that subjective ability to kneel and actual ability may differ, and also that kneeling can be taught by a therapist. Our data also shows that female gender had a higher reported rate of kneeling


Bone & Joint 360
Vol. 7, Issue 2 | Pages 40 - 42
1 Apr 2018
Foy MA


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 408 - 412
1 Mar 2007
Ma H Lu Y Kwok T Ho F Huang C Huang C

One of the most controversial issues in total knee replacement is whether or not to resurface the patella. In order to determine the effects of different designs of femoral component on the conformity of the patellofemoral joint, five different knee prostheses were investigated. These were Low Contact Stress, the Miller-Galante II, the NexGen, the Porous-Coated Anatomic, and the Total Condylar prostheses. Three-dimensional models of the prostheses and a native patella were developed and assessed by computer. The conformity of the curvature of the five different prosthetic femoral components to their corresponding patellar implants and to the native patella at different angles of flexion was assessed by measuring the angles of intersection of tangential lines.

The Total Condylar prosthesis had the lowest conformity with the native patella (mean 8.58°; 0.14° to 29.9°) and with its own patellar component (mean 11.36°; 0.55° to 39.19°). In the other four prostheses, the conformity was better (mean 2.25°; 0.02° to 10.52°) when articulated with the corresponding patellar component. The Porous-Coated Anatomic femoral component showed better conformity (mean 6.51°; 0.07° to 9.89°) than the Miller-Galante II prosthesis (mean 11.20°; 5.80° to 16.72°) when tested with the native patella. Although the Nexgen prosthesis had less conformity with the native patella at a low angle of flexion, this improved at mid (mean 3.57°; 1.40° to 4.56°) or high angles of flexion (mean 4.54°; 0.91° to 9.39°), respectively. The Low Contact Stress femoral component had the best conformity with the native patella (mean 2.39°; 0.04° to 4.56°). There was no significant difference (p > 0.208) between the conformity when tested with the native patella or its own patellar component at any angle of flexion.

The geometry of the anterior flange of a femoral component affects the conformity of the patellofemoral joint when articulating with the native patella. A more anatomical design of femoral component is preferable if the surgeon decides not to resurface the patella at the time of operation.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 10 | Pages 1466 - 1470
1 Oct 2010
Didden K Luyckx T Bellemans J Labey L Innocenti B Vandenneucker H

The biomechanics of the patellofemoral joint can become disturbed during total knee replacement by alterations induced by the position and shape of the different prosthetic components. The role of the patella and femoral trochlea has been well studied. We have examined the effect of anterior or posterior positioning of the tibial component on the mechanisms of patellofemoral contact in total knee replacement. The hypothesis was that placing the tibial component more posteriorly would reduce patellofemoral contact stress while providing a more efficient lever arm during extension of the knee.

We studied five different positions of the tibial component using a six degrees of freedom dynamic knee simulator system based on the Oxford rig, while simulating an active knee squat under physiological loading conditions. The patellofemoral contact force decreased at a mean of 2.2% for every millimetre of posterior translation of the tibial component. Anterior positions of the tibial component were associated with elevation of the patellofemoral joint pressure, which was particularly marked in flexion > 90°.

From our results we believe that more posterior positioning of the tibial component in total knee replacement would be beneficial to the patellofemoral joint.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 737 - 742
1 May 2010
Verlinden C Uvin P Labey L Luyckx JP Bellemans J Vandenneucker H

Malrotation of the femoral component is a cause of patellofemoral maltracking after total knee arthroplasty. Its precise effect on the patellofemoral mechanics has not been well quantified. We have developed an in vitro method to measure the influence of patellar maltracking on contact. Maltracking was induced by progressively rotating the femoral component either internally or externally. The contact mechanics were analysed using Tekscan. The results showed that excessive malrotation of the femoral component, both internally and externally, had a significant influence on the mechanics of contact. The contact area decreased with progressive maltracking, with a concomitant increase in contact pressure. The amount of contact area that carries more than the yield stress of ultra-high molecular weight polyethylene significantly increases with progressive maltracking. It is likely that the elevated pressures noted in malrotation could cause accelerated and excessive wear of the patellar button.